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Example 2

• Suppose Yi = β0 + β1Xi + β2X 2
i + ui and Xi is

endogenous.
• Need 2 instruments for identification.

• You can use Zi and Z 2
i as instruments if E(ui | Zi) = 0.

• 2SLS:
• Regress Xi on Zi and Z 2

i to get X̂i

• Regress X 2
i on Zi and Z 2

i to get X̂ 2
i

• Regress Yi on X̂i and X̂ 2
i

• Note: do not use X̂ 2
i !

• Similar for models with an interacted endogenous
regressor.
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Example 2

• Suppose Yi = g(Xi ;β) + ui but E(ui | Xi) 6= 0.
• A straightforward application of GMM if there are

instruments Zi such that E(uiZi) = 0.

• The GMM objective function is(
n∑

i=1

(Yi − g(Xi ;β))Z ′
i

)
W

(
n∑

i=1

(Yi − g(Xi ;β))Z ′
i

)
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Example 3

• Suppose Yi = g(Xi ,ui ;β).
• If ui is independent of Xi then estimation is possible via

GMM or MSM if the distribution of ui is specified.

• What if Xi is endogenous but Zi is not?
• If g is an invertible function then you can construct moments

E(m(Yi ,Xi ;β)Zi ) = 0.
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• Suppose Yi = g(Xi ,ui ;β).
• Control functions: Suppose we can come up with a function
ν(Xi ,Zi) such that Xi is independent of ui conditional on
ν(Xi ,Zi).

• example: if Xi = γ′Zi + Vi use ν(Xi ,Zi ) = Xi − γ′Zi = Vi

• Then

E(Yi | Xi , νi) = E(g(Xi ,ui ;β) | Xi , νi) =

∫
g(x ,u;β)fui |νi dui

• Average over values of νi to get∫ (∫
g(x ,u;β)fui |νi dui

)
fνi dνi =

∫
g(x ,u;β)fui (u)dui
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Example 3

• Suppose Yi = g(Xi ,ui ;β).
• The likelihood approach

• Suppose Xi = h(Zi , vi ; γ) and (ui , vi ) are independent of Zi .
• Suppose the density fui ,vi ;α is known.
• Let Ỹi = (Yi ,Xi ). Then the likelihood

L(β, γ, α) =
∑

i

log(fỸ |Z (Ỹi | Zi ;β, γ, α))

can be constructed.
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Linear probability model

• Suppose Yi is a binary outcome, Xi is an endogenous
regressor, and Zi is an exogenous instrument.
• The usual 2SLS formula treats the second stage as a linear

probability model.

• When Xi is binary also, 2SLS produces an estimate of an
average of the treatment effect, Y1 − Y0, over a certain
subset of the population.
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Random utility model

• A random utility/threshold crossing/ linear index model:

yi = 1(β0 + β1xi + ui ≥ 0)

• In this model, the treatment effect is given by

1(β0 + β1 + ui ≥ 0)− 1(β0 + ui ≥ 0)

• And the ATE is

Pr(β0 + β1 + ui ≥ 0)− Pr(β0 + ui ≥ 0)
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Random utility model

• Suppose that Xi = 1(γ0 + γ1Zi + vi ≥ 0) where Zi is binary.
• 2SLS provides an estimate of

Pr(β0 + β1 + ui ≥ 0 | −γ0 − γ1 ≤ vi ≤ −γ0)

− Pr(β0 + ui ≥ 0 | −γ0 − γ1 ≤ vi ≤ −γ0)

• We will derive this later. For now, let’s think about
estimating β directly instead of “treatment effects”.
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Triangular model with probit second stage

• The two equations are

xi = γ0 + γ′Zi + σννi

yi = 1(β0 + β1xi + ui ≥ 0)

where

(ui , νi) ∼ N
(

0,
(

1 ρ
ρ 1

))
• This can be estimated via maximum likelihood.
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Triangular model with probit second stage

• This model imposes some strong restrictions:
• normality
• homoskedasticity
• full independence of Zi

• Generally get misleading estimates from a probit that uses
predicted values from first stage.
• ivprobit implements this in Stata (biprobit if Xi is

also binary)
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Triangular model with probit second stage

• Control function approach
• assume that ui | xi , νi ∼ ui | νi
• under this assumption:

• estimate ν̂i from first stage
• then estimate

Pr(yi = 1 | xi = x , ν̂i = ν) = Fui |νi (β0 + β1x | ν)
• If ui , νi ∼ N(0,Σ) then the right hand side here can be

derived analytically.
• A semiparametric approach can be used to avoid specifiying

the distribution Fui |νi .
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Heterogeneity

• When we talk about heterogeneity, usually we mean
heterogeneity in causal effects.
• The individual causal effect differs across individuals.

• James Heckman, among many others, has argued over
the past 30-40 years that this type of heterogeneity is
prevalent.
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Review

• Recall the discussion from the first lecture:
• Y1i − Y0i represents the individual treatment effect
• δx = E(Y1i − Y0i | Xi = x) is the average treatment effect

conditional on x
• observable heterogeneity is when δx varies with x

• under the conditional independence assumption, OLS
estimates a weighted average,

∑
x wxδx .

• note that this result allows for unobserved heterogeneity too
because we do not assume that Y1i − Y0i = δXi .
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Heterogeneity+Endogeneity

• What if the conditional independence assumption fails?
• we may use an instrumental variable strategy
• if there is also heterogeneity, what does IV estimate?
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Heterogeneity

• What if there is unobserved heterogeneity?
• i.e., if Y1i − Y0i 6= δXi

• this could be ok
• a textbook example:

• suppose Yi = α + βiDi + ui where βi = β + ηi

• then Yi = α + βDi + εi where εi = ui + ηiDi
• if E(uiDi ) = 0 and E(ηi | Di ) = 0 then OLS estimates
β = E(βi )
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Heterogeneity

• The Roy model will be used to demonstrate a link between
unobserved heterogeneity and endogeneity.
• The textbook example above is misleading because often
ηi will be correlated with Di .
• Moreover, even if Zi is uncorrelated with ui it will often not

be uncorrelated with ηiDi .
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LATE

• Ignore X (exogenous control variables) and let Dz denote
the (counteractual) value of D when Z is fixed at z.

• in the random utility/threshold crossing model,
Dz = 1(γ′2z ≥ V )

• Imbens and Angrist consider a binary Z and show that

E(Y | Z = 1)− E(Y | Z = 0)
E(D | Z = 1)− E(D | Z = 0)

= E(Y1 − Y0 | D1 > D0)

• Thus, IV (lhs) identifies the local average treatment effect
(LATE; rhs), which is the average effect for those induced
to “participate” by Z . This population is sometimes called
the “compliers”.
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LATE assumptions

• Let Yi(d , z) denote the counterfactual outcome.
• Theorem 4.4.1 in MHE.

• Assumption 1. (Yi(D1i ,1),Yi(D0i ,0),D1i ,D0i) ⊥⊥ Zi
• Assumption 2. Yi(d ,1) = Yi(d ,0)
• Assumption 3. E(D1i − D0i) 6= 0
• Assumption 4. D1i − D0i ≥ 0 for all i , or vice versa
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LATE assumptions

• Theorem 4.4.1 in MHE.
• monotonicity : The ceteris paribus effect of changing Z on D

has the same sign for everyone, i.e., either D1i ≥ D0i for all i
or D1i ≤ D0i for all i .

• Really this is a “uniformity” assumption. If Z takes more
than two values there is no need for monotonicity, only that
D changes in the same direction for everyone as Z
changes.

• The assumption is implied by the equation
D = 1(γ′1X + γ′2Z ≥ V ) but it would fail if γ2 was a random
coefficient.

• MHE interpret the assumption as requiring no “defiers”.
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More on LATE

• When Z is continuous, we can estimate the MTE and
various weighted averages of the MTE.
• The LATE framework is useful in understanding what we

are able to learn when Z is discrete.
• Cases where LATE = TT or LATE = TUT
• Characterizing compliers.
• LATE with covariates
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Special cases

• The TT can be written as a weighted average of LATE and
the average effect for the always-takers.
• In some cases, D must be equal to 0 when Z = 0.

• The Bloom example – Z is a random assignment and D a
treatment and there is one-way noncompliance.

• One-way noncompliance means that some with Z = 1
choose D = 0 (refuse treatment) but no one with Z = 0 can
have D = 1.

• In these cases, IV estimates TT.
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Special cases

• The TUT can be written as a weighted average of LATE
and the average effect for the never-takers.
• In some cases, D must be equal to 1 when Z = 1.

• Suppose D indicates having a third child (as opposed to
only 2) and Z indicates whether the second birth was a
multiple birth.

• Then if Z = 1 we must have D = 1.
• There are no “never-takers”.

• In these cases, IV estimates TUT.
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Compliers

• A few results:
• Pr(D1 > D0) = E(D | Z = 1)− E(D | Z = 0)
• for any W such that (D1,D0) is independent of Z

conditional on W , E(W | D1 > D0) =
E(κW )
E(κ) where

κ = 1− D(1− Z )

1− Pr(Z = 1 |W )
− (1− D)Z

Pr(Z = 1 |W )

• and, more generally, fW |D1>D0(w) is equal to

E(D | Z = 1,W = w)− E(D | Z = 0,W = w)

E(D | Z = 1)− E(D | Z = 0)
fW (w)
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LATE with covariates
• The LATE story gets quite a bit more complicated with

covariates.
• Let λ(x) = E(Y1 − Y0 | D1 > D0,X = x) denote the LATE

conditional on X .
• We could estimate these directly using the Wald formula

conditional on X .

• If we do 2SLS where the first stage is fully saturated and
the second stage is saturated in X we get a weighted
average of the λ(x).
• The weights are larger for values of x such that

Var(E(D | X = x ,Z ) | X = x) is larger.
• if Pr(Z = 1 | X ) is a linear function of X then 2SLS gives

the minimum MSE approximation to E(Y | D,X ,D1 > D0).
• This is useful because E(Y | D = 1,X ,D1 > D0)− E(Y |

D = 0,X ,D1 > D0) = λ(X ).
• Abadie (2003) proposes a way to estimate this same

minimum MSE approximation when Pr(Z = 1 | X ) is not
linear.
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