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Roadmap

• Most of this lecture will roughly correspond to Sections 4.8
and 4.9 in Cameron and Trivedi and 4.1, 4.2, and 4.6.4 in
Angrist and Pischke.
• Two important issues that we will leave out today:

• nonlinearity
• heterogeneous effects



Linear IV Weak instruments Exogeneity condition

Linear IV

Weak instruments

Exogeneity condition



Linear IV Weak instruments Exogeneity condition

The IV model

• Consider the regression model

yi = β0 + β1xi + ui

where xi is endogenous, meaning that E(uixi) 6= 0.
• If

• zi is exogenous, meaning that E(uizi ) = 0,
• and relevant, meaning that Cov(zi , xi ) 6= 0,

then
Cov(yi , zi)

Cov(xi , zi)
= β1
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Examples

• Supply and Demand (Wright, 1928)
• To estimate demand, zi should be a “supply shifter”.
• To estimate supply, zi should be a “demand shifter”.
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Examples

• KIPP charter school evaluation (Angrist et al., 2012)
• instrument: dummy for lottery result
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The general model

• Consider the regression model

yi = β0 + β′1Xi1 + β2Xi2 + ui

where X1i is exogenous but X2i is endogenous.
• Let Zi denote a vector of exogenous variables not included

in Xi1.
• Let Xi = (X ′i1,X

′
i2)′ and Z̃i = (X ′i1,Z

′
i )′ and let β = (β′1, β

′
2)′.
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The general model

• Exogeneity of Zi now means “exogeneous conditional on
X1i ”
• In the supply/demand example, Xi1 should include common

determinants of supply and demand.
• In the KIPP example, Xi1 should include indicators for

different lotteries if multiple lotteries are pooled.
• In that paper, they need to include year dummies, as they

pool data across multiple years, and grade dummies, as
there were separate lotteries for entry into different grades.
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The general model

• This could be motivated by the following triangular model.

Xi2 = γ0 + γ′1Xi1 + γ′2Zi + νi (First stage)
yi = β0 + β′1Xi1 + β2Xi2 + ui (Second stage)

• If multiple regressors are endogenous, this can be
modeled using multiple first stage equations.

• The triangular model also arises from a simultaneous
equations model of the general form:

Yi = B0 + B1Xi + B2Yi + Ui

where identification relies on sufficient restrictions on B1
and B2.
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IV estimators

• Two-stage least squares (2SLS):
• Estimate the OLS regression of Xi2 on Z̃i , producing fitted

values X̂i2
• Estimate the OLS regression of yi on Xi1 and X̂i2
• In matrix notation,

β̂2SLS =
(

X ′Z̃ (Z̃ ′Z̃ )−1Z̃ ′X
)−1

X ′Z̃ (Z̃ ′Z̃ )−1Z̃ ′y

where y is the N × 1 vector (yi ), X is the N × K matrix (X ′i )

and Z̃ is the N × r matrix (Z̃ ′i ).
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IV estimators

• The 2SLS estimator can also be written as

β̂2SLS = (X̂ ′X̂ )−1X̂ ′y

where X̂ = (X ′i1, X̂i2).
• If dim(Z̃i ) = dim(Xi ) (just-identified) then it simplifies to

β̂2SLS =
(

Z̃ ′X
)−1

Z̃ ′y .
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IV estimators

• In the just identified case with Xi2 scalar, 2SLS is also
equivalent to the following.
• Let γ̂2 denote the coefficient on Zi in the first stage

regression.
• Let α̂2 denote the coefficient on Zi in the reduced form

regression,
yi = α0 + α′1Xi1 + α2Zi + εi

• Then take the ratio, β̂2 = α̂2
γ̂2

• The simplest version of this, the Wald estimator, is when Z̃i
and Xi are both scalars and Zi is binary:

E(yi | Zi = 1)− E(yi | Zi = 0)

E(Xi | Zi = 1)− E(Xi | Zi = 0)
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IV estimators

• Indirect least squares (ILS)
• Let Z ∗i denote a vector with the same dimension as Xi and

define

β̂ILS = (Z ∗′X )−1Z ∗′y

• If (i) plim N−1∑N
i=1 Z ∗i ui = 0 and (ii) plim N−1∑N

i=1 Z ∗i X ′i is
full rank, then β̂ILS →p β.

• Clearly, just identified 2SLS is an example of an ILS
estimator.

• Actually, 2SLS is always an ILS estimator with Z ∗ = X̂ .
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IV estimators

• When is the exogeneity condition, plim N−1∑N
i=1 Z ∗i ui = 0,

satisfied?
• Suppose Z ∗i = ψ(Xi1,Zi ) and that E(ui | Xi1,Zi ) = 0.
• Then if, for example, the sample is iid and Var(Z ∗i ui ) <∞,

the WLLN =⇒

N−1
N∑

i=1

Z ∗i ui →p E(Z ∗i ui ) = E(Z ∗i E(ui | Xi1,Zi )) = 0
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IV estimators

• In my notes on IV estimators, I also show that
• If the X̂ in the 2SLS estimator, (X̂ ′X̂ )−1X̂ ′y , is replaced with

a consistent estimator for E(Xi | Z̃i ) then we obtain a
consistent estimator of β. However, this is not the standard
2SLS estimator.

• If the model used to estimate X̂ is misspecified (so that X̂ is
not consistent for E(Xi | Z̃i )) then generally the modified
2SLS estimator will not be consistent. The standard 2SLS
estimator is the exception to this rule – the OLS first stage
does not have to be a consistent estimator for E(Xi | Z̃i ).

• This is often referred to as a “forbidden” regression.
• Examples

• Not using all of Xi1 in the first stage.
• Estimating a nonlinear (e.g., a probit for binary Xi2) first

stage.
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IV estimators

• So why does the standard 2SLS work, even when
E(Xi | Z̃i) is not linear?
• The OLS residuals are uncorrelated with the OLS predicted

values by construction. So

X̂ ′X̂ = X̂ ′ (X − ê)

= X̂ ′X

• But the residuals from a nonlinear model are not generally
uncorrelated with the predicted values.
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IV estimators

• Another consistent estimator
• Use a (possibly nonlinear) model to estimate X̂ = µ̂(Z̃ ).
• Let Z ∗ = X̂ .
• The ILS estimator is a just identified 2SLS estimator with X̂

as the instrument, (
µ̂(Z̃ )′X

)−1
µ̂(Z̃ )′y

not (
µ̂(Z̃ )′µ̂(Z̃ )

)−1
µ̂(Z̃ )′y

• The first stage does not have to provide a consistent
estimator of the conditional expectation.
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IV estimators

• Another IV estimator is the generalized method of
moments (GMM):
• Based on moments: E((yi − β′Xi )Z̃i ) = 0
• The GMM estimator uses a weighting matrix WN and

minimizes(
n−1

n∑
i=1

((yi − β′Xi )Z̃i )

)′
WN

(
n−1

n∑
i=1

((yi − β′Xi )Z̃i )

)

• In matrix notation,

β̂GMM =
(

X ′Z̃WN Z̃ ′X
)−1

X ′Z̃WN Z̃ ′y
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Comparison of these estimators

1. GMM can be written as an ILS estimator as well.

2. If dim(Xi) = dim(Z̃i) (just identified case), GMM
corresponds to the 2SLS estimator.

3. If dim(Xi) > dim(Z̃i) different weights for the GMM
estimator lead to different results.

4. If dim(Xi) > dim(Z̃i) and errors are “spherical”
(Var(u) = σ2

uI) then the optimal GMM estimator with
optimal WN coincides with 2SLS.

5. If dim(Xi) > dim(Z̃i) and errors are heteroskedastic or
autocorrelated, optimal GMM is more efficient than 2SLS.
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• Other estimators:
• LIML, jacknife 2SLS, Fuller estimator (later)
• iterated GMM and CUE (later)
• 3SLS, systems GMM (see CT Section 6.9)
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The problem

• The IV estimator is always biased.
• Typically this bias is negligible for large samples.
• Tests have the wrong size. Separate problems:

• a weak instrument can exacerbate large sample bias
• a weak instrument will increase standard errors
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Stock and Yogo (2005)

• The model of Stock and Yogo (2005):

y = Yβ + Xγ + u
Y = Z Π + XΦ + V

where Y consists of n endogenous regressors, X consists
of K1 exogenous regressors, and Z consists of K2 ≥ n
exogenous instruments.
• Let Z = [X ,Z ] (what we previously called Z̃ ).
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When X2i is scalar

• Suppose n = 1 (one endogenous regressor) and K1 = 0
(no “controls”).
• define the concentration parameter

µ2 =
Π′Z ′Z Π

Var(V )

• the bias is

E(β̂2SLS − β) ≈ Cov(u,V )

Var(V )

(
µ2/K2 + 1

)−1

• note that Cov(u,V )
Var(V ) is the bias of the OLS estimator!
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Weak instrument tests

• The easiest approach is based on the first stage F
statistic.
• the F statistic for testing H0 : Π = 0

• if F < 10 then instruments are weak
• this rule-of-thumb is still fairly common but we can do

better
• this rule-of-thumb and the tests below are not tests of the

null hypothesis that Π = 0
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Weak instrument tests

• The idea is to test the null hypothesis that the bias is less
than or equal to x% of the OLS bias.
• This approach can be extended to the general model.
• An alternative is to test the null that the size of the Wald test

for significance of β is no larger than r ≥ α.
• Two relevant issues here: (1) heteroskedastic errors and (2)

number of endogenous regressors
• The Stock and Yogo (2005) test allows for n > 1 but

assumes homoskedasticity.
• Montiel Olea-Pflueger (2013) allows for heteroskedasticity

but is only for the n = 1 case
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• Stock and Yogo (2005)
• A different first stage regression for each endogenous

regressor.
• Construct a matrix analogue of the first stage F statistic.
• Stock and Yogo (2005) provide critical values for a test

(Cragg-Donald) based on the smallest eigenvalue of this
matrix.

• The Cragg-Donald test is a test for underidentification.
• Stock and Yogo (2005) test is for weak identification: critical

values more conservative
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• Montiel Olea-Pflueger (2013)
• The Kleibergen-Paap statistic is a robust version of the

Cragg-Donald statistic.
• Montiel Olea-Pflueger (2013) argue that this is not the right

statistic to use for identifying weak instruments.
• They provide an alternative that only works for the n = 1

case.
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Robust estimators

• Robust estimators.
• k -class estimators

• let Y⊥ and Z⊥ denote projections onto X
• for a given k define

β̂(k) = (Y⊥′(I − kMZ⊥)Y
⊥)−1Y⊥′(I − kMZ⊥)y

⊥

• β̂2SLS = β̂(1)
• LIML, Fuller, and bias-adjusted 2SLS use different

(data-dependent) values of k – all asymptotically equivalent
under standard asymptotics

• Fuller seems to be the best in weak IV situations
• available as options to ivreg2 in Stata
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Robust inference on β

• Robust hypothesis tests.
• The basic idea is that we can base inference on the

reduced form regression:

y = Z Πβ + X (Φβ + γ) + Vβ + u

• To test H0 : β = 0 this is obvious...
• To test H0 : β = b, it takes a little more work.
• Two issues: (1) which test is efficient under weak

instruments (2) robust to heteroskedasticity?
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Robust inference on β

• Anderson Rubin test - the best choice in the just identified
case
• Conditional likelihood ratio (CLR) test - the best choice in

the over-identified case if errors are homoskedastic
• Heteroskedasticity and over-identification? There are

extensions of the CLR test...active research on this.
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Conclusion

• AP’s suggestions
• report first stage results
• report first stage F statistic and compare to 10
• estimate just-identified model
• compare 2SLS with LIML
• look at reduced form outcome regression

• my take
• checking first stage results and reduced form outcome

results makes sense
• use Stock and Yogo (2005) rather than F > 10
• try AR and CLR tests for significance
• try GMM/CUE for improvements under heteroskedasticity
• See NBER session

https://www.nber.org/econometrics_minicourse_2018/
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Large sample bias of IV

• Consider the simple setup with:
• model: Yi = β′Xi + ui
• ILS estimator: (Z ∗′X )−1Z ∗′Y
• This is consistent if n−1Z ∗′u →p 0
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Large sample bias of IV

• What if n−1Z ∗′u 6→p 0?
• Consider the case where Xi and Z ∗i are scalar:

• Let ρZ∗u and ρXu denote nonzero correlations between Z ∗

and u and X and u.
• Then the large sample bias of this IV estimator relative to

the large sample bias of OLS:

β̂IV − β
β̂OLS − β

→p
ρZ∗u

ρXuρZ∗X

where ρZ∗X is the correlation between Z ∗ and X
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Large sample bias of IV

• Another useful formula is possible in the case where Xi2
and Zi are scalar.
• In this case, the 2SLS estimator is equal to

Cov(eZX1,i ,Yi )

Cov(eZX1,i ,Xi2)

where eZX1,i is the residual from a regression of Zi on Xi1.
• The relative bias is

β̂IV − β
β̂OLS − β

→p
ρeZX1 u

ρeX2X1 uρeZX1 eX2X1



Linear IV Weak instruments Exogeneity condition

Large sample bias of IV

• Lessons:
1. IV is more biased when X and Z ∗ are “equally endogenous”
2. Minimal endogeneity of Z ∗ can lead to relatively large bias

if ρZ∗X is small.
3. Adding controls (X1i ) can reduce ρeZX1 u but may also reduce

ρeZX1 eX2X1
.
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Tests of this assumption

• The exogeneity assumption is not testable.
• Overidentification tests:

• If there are more instruments than needed, tests based on
this overidentification are possible.

• The simplest version is a Hausman test that compares two
just-identified estimators.

• The Hansen-Sargan test is a generalization of this.
• The null of these tests is that all instruments are

exogenous.
• Rejection means that at least one instrument is not

exogenous.
• When there are heterogeneous effects, implications are even

less clear.
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