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Identification

• Let fY |X (Yi | Xi ; θ) denote the conditional density of Yi
given Xi , which depends on a parameter vector θ, which
must be in a parameter space Θ.

• The model is identified at θ0 if fY |X (y | x ; θ) = fY |X (y | x ; θ0)
implies that θ = θ0.

• The model is identified if this holds for any possible value
of θ0 ∈ Θ.
• The model is locally identified if this is true only for values

of θ in a neighborhood around θ0.
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Identification

• If θ = (θ1, θ2) then it may be that θ1 is identified but not θ2.

• If fY |X (y | x ; θ) = fY |X (y | x ; θ0) then θ1 = θ10.
• The model is partially identified if

fY |X (y | x ; θ) = fY |X (y | x ; θ0) implies that θ ∈ Θ0 ⊆ Θ
• Θ0 is called the “identified set”.
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Identification

• It is often the case that we have to restrict Θ in order for
the model to be identified.
• Sometimes these restrictions have testable implications.
• Sometimes they don’t.

• If θ0 is “close” to a point outside Θ where the model is not
identified, inference may be effected.
• This is called “weak identification”

• We will see an example of this shortly.
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Maximum likelihood

• The MLE of θ is arg maxθ∈Θ
∑n

i=1 log
(
fY |X (Yi | Xi ; θ)

)
.

• The estimator is consistent if Ln(θ)→p L(θ) and
L(θ) = L(θ0) implies that θ = θ0.

• If the model is identified, the likelihood is correctly specified,
and L(θ) = E

(
log(fY |X (Yi | Xi ; θ))

)
then this condition

holds.
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Maximum likelihood

• A failure of local identification can often be detected by
observing that the likelihood function is flat in some region.
• (Global) identification failures are harder to detect

empirically.
• In complex models that require numerical integration or

simulation, even local identification failures may be
overlooked, particularly when θ is high-dimensional.
• Therefore, generally, identification should be proved

theoretically.
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MLE example

• Suppose that

yi = β0 + β1x1i + β2x2i + ui

x1i = γ0 + γ1x2i + vi

and (ui , vi) | x2i ∼ N(0,Σ).
• Consider the likelihood with Yi = (yi , x1i) and Xi = x2i .

• Let θ = (β0, β1, β2, γ0, γ1,Σ).
• The distribution is a bivariate normal with mean
µ(x2i ; θ) = (β0 + β1γ0 + β1γ1x2i + β2x2i , γ0 + γ1x2i ) and
variance

Σ =

(
σ2

u + β2
1σ

2
v + 2β1σuv β1σ

2
v + σuv

β1σ
2
v + σuv σ2

v

)
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MLE example

• Identification failure:
• For any s ∈ [0,1] define βs

1 = s(β1 + β2/γ1) and
βs

2 = (1− s)(β1γ1 + β2).
• Then notice that βs

1γ1 + βs
2 = β1γ1 + β2 for every s.

• Then if we define βs
0 so that βs

0 + βs
1γ0 = β0 + β1γ0

• and σs
uv so that βs

1σ
2
v + σs

uv = β1σ
2
v + σuv

• and σs
u so that

(σs
u)2 + (βs

1)2σ2
v + 2βs

1σ
s
uv = σ2

u + β2
1σ

2
v + 2β1σuv

• then L(θ(s)) = L(θ).
• Solutions:

• assume that σuv = 0 (i.e., X1i is exogenous)
• or assume that β2 = 0 (i.e., an exclusion restriction)
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MLE example

• Consider the second solution that β2 = 0.
• Under this restriction, the model is identified if γ1 6= 0.
• Even after imposing β2 = 0, we have to restrict Θ further to

get identification.
• This is an example of a testable restriction.

• But what happens if β2 is close to 0?

• weak identification
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GMM

• Consider GMM estimation of θ based on the moment
conditions, E(wim(yi , xi , θ0)) = 0.
• Then the model is identified at θ0 if E(wim(yi , xi , θ)) = 0

implies that θ = θ0.
• The model is identified if this holds regardless of the value

of θ0.
• The model is locally identified if this is true only for values

of θ in a neighborhood around θ0.

• n.b. It is possible that (a) fY |X (y | x ; θ) = fY |X (y | x ; θ0)
implies that θ = θ0 but (b) there is some θ 6= θ0 such that
E(wim(yi , xi , θ)) = 0 .
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Indirect inference

• Last class we also saw a condition for identification based
on indirect inference (i.e., the method of simulated
moments).
• The binding function θ(β) must be one-to-one.

• This is often hard to verify.
• Del Boca, Flinn, Wiswall (2014, REStud) provides a good

example.
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Del Boca et al. (2014) model

• Parents choose time (τ1,t and τ2,t ) and goods (et ) to invest
in child, along with leisure and work hours (lj,t and hj,t ,
j = 1,2) .
• Child quality: kt+1 = Rtτ

δ1,t
1,t τ

δ2,t
2,t eδ3,t

t kδ4,t
t .

• Period utility: u = α1 ln l1t + α2 ln l2t + α3 ln ct + α4 ln kt
• Period budget constraint: ct + et = w1th1t + w2th2t + It
• Time constraint: T = lj,t + hj,t + τj,t for each j = 1,2
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Del Boca et al. (2014) model

• Finite horizon optimization.
• There are M time periods (ages) and parents maximize

expected discounted sum of utility over the M periods.
• This requires specification of a terminal value.
• The model can then be solved by backwards induction.
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Del Boca et al. (2014) model

• Solution.
• τj,t = (T − hj,t )

φj,t
αj +φj,t

and et = (w1th1t + w2th2t + It )
φ3,t

α3+φ3,t

where φj,t = βδj,tηt+1
• The ηt are solved recursively as a function of α4 and δ4,t .
• Labor supply also has a convenient closed-form solution,

though corner solutions needed to be accounted for.
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Del Boca et al. (2014) econometric specifications

• Children are observed at different ages so specify

δj,t = exp(γj,0 + γj,1t)

• The TFP sequence includes a stochastic component,

Rt = exp(γ0,0 + γ0,1t + ω̄t )

• Individual hetereogeneity in α: distribution G(α) that
enforces α1 + α2 + α3 + α4 = 1
• Joint wage equations for spouses (education, age, age

squared, year of birth, correlated errors).
• Censored process for non-labor income: It = max{0, I∗t }.
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Del Boca et al. (2014) identification

• Suppose we observe each child i for two periods starting
with period ti .
• We could estimate: ln ki,ti +1 = γ0,0 + γ0,1ti + δ1,ti ln τi,1,ti +
δ2,ti ln τi,2,ti + δ3,ti ln ei,ti + δ4,ti ln ki,ti + ηi,ti
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Del Boca et al. (2014) identification

• The wage equations are harder to estimate because of
censoring. We only observe wage wj,t if hj,t > 0.

• “Under our model specification, we can ‘correct’ our
estimator of model parameters for the non-randomly
missing data using the DGP structure from the model.”

• “ In this case, both the wage processes and the parameters
characterizing preferences and production technologies
must be simultaneously estimated.”
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Del Boca et al. (2014) identification

• Suppose we know β.
• Given δj,t ’s we can estimate α for each household using the

input demand equations.
• G(α) is nonparametrically identified

• Suppose α is known.
• Use the labor supply equations to estimate β.
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Del Boca et al. (2014) identification

• This is not a rigorous identification argument, though for
many it is “good enough”.
• Issues:

• Is G(α) really identified?
• The input demand and labor supply equations have to be

linearly independent.
• Labor supply censoring ...



Identification in parametric models Del Boca et al. (2014) Semiparametric and nonparametric identification Partial identification

Del Boca et al. (2014) identification

• Once we’re convinced the model is identified, we also need
to use moments (auxiliary models) that are sufficient for
the binding function to be one-to-one.
• The identification argument should inform us in this regard.
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Semiparametric models

• A semiparametric model is one in which θ is composed of
θ1 and θ2 where θ1 is finite dimensional (i.e., a length K
vector) and θ2 is infinite-dimensional (i.e., a function, or a
vector of functions).
• The model is identified at θ0 if fY |X (y | x ; θ) = fY |X (y | x ; θ0)

implies that θ = θ0.

example:
• Yi is binary and Pr(Yi = 1 | Xi ) = Fε(β′Xi ).
• Unless we assume that Fε is known (for example, Fε = Φ),

then θ1 = β and θ2 = Fε and this is a semiparametric model.
• This model is not identified without restrictions on Fε and/or

β.



Identification in parametric models Del Boca et al. (2014) Semiparametric and nonparametric identification Partial identification

Semiparametric models

• A semiparametric model is one in which θ is composed of
θ1 and θ2 where θ1 is finite dimensional (i.e., a length K
vector) and θ2 is infinite-dimensional (i.e., a function, or a
vector of functions).
• The model is identified at θ0 if fY |X (y | x ; θ) = fY |X (y | x ; θ0)

implies that θ = θ0.
example:
• Yi is binary and Pr(Yi = 1 | Xi ) = Fε(β′Xi ).
• Unless we assume that Fε is known (for example, Fε = Φ),

then θ1 = β and θ2 = Fε and this is a semiparametric model.
• This model is not identified without restrictions on Fε and/or

β.



Identification in parametric models Del Boca et al. (2014) Semiparametric and nonparametric identification Partial identification

Nonparametric models

• A nonparametric model is one in which θ is
infinite-dimensional (i.e., a function, or a vector of
functions).
• The model is identified at θ0 if fY |X (y | x ; θ) = fY |X (y | x ; θ0)

implies that θ = θ0.

example 1:
• Yi is binary and Pr(Yi = 1 | Xi ) = m(Xi ).
• Here if we don’t assume anything about the function m(x)

then this is a nonparametric model.
• The function m is identified (at points x in the support of Xi ).

example 2:
• Yi is binary and Pr(Yi = 1 | Xi ) = Fε(m(Xi )).
• This is a random utility model where m(x) and Fε represent

distinct parts of the underlying structural model. This is also
a nonparametric model.

• This model is not identified!
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Identification of some features

• Sometimes some parameters in the model are identified
and others are not.
• In the bivariate normal model above, γ0, γ1 and σv are

identified without any restrictions on Θ.
• Sometimes certain combinations of parameters are

identified even when none are individually identified.
• In the semiparametric RUM model above, if Fε is

differentiable with derivative fε then

∂

∂xk
Pr(Yi = 1 | Xi = x) = βk fε(β′x)

• Therefore, βk/βl is identified as long as βl 6= 0.
• This result can be proved under weaker assumptions as

well.
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Identification of some features

• Both of these cases fit within the following definition.
• A feature of the model, represented by a mapping ψ(θ), is

identified if fY |X (y | x ; θ) = fY |X (y | x ; θ0) implies that
ψ(θ) = ψ(θ0).
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Partial identification

• The identified set for a parameter θ is

ΘI = {θ ∈ Θ : fY |X (y | x ; θ) = fY |X (y | x ; θ0)}

• The identified set depends on θ0 and Θ.
• The identified set for a feature of the model, ψ(θ) is

ψ(ΘI) = {ψ(θ) : θ ∈ ΘI}
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Example 1

• Consider estimation of the ATE when the common support
condition is not satisfied.
• Let CS denote the common support.
• Suppose 0 ≤ Yi ≤ 1 and that Pr(Xi ∈ CS) = π.
• Note that

ATE =

∫
δ(x)fX (x)dx

=

∫
CS
δ(x)fX (x)dx +

∫
CSc

δ(x)dx
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Example 1

• First, −(1− π) ≤
∫

CSc δ(x)dx ≤ 1− π.
• Second, the ATE on the common support is

ATECS =
∫

CS δ(x) fX (x)
π dx .

• Therefore,

ATECSπ − (1− π) ≤ ATE ≤ ATECSπ + (1− π)

• If δ(x) is identified for x ∈ CS then these two bounds are
identified, meaning that the identified set for ATE is the
interval [ATECSπ − (1− π),ATECSπ + (1− π)].
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Example 2

• Economic models with multiple equilibria only provide
moment inequalities.
• Suppose that E(wim(yi , xi , θ0)) ≤ 0.
• Then the identified set for θ is

ΘI = {θ ∈ Θ : E(wim(yi , xi , θ)) ≤ 0}

• See, e.g., Manski and Tamer (2002) and Ciliberto and
Tamer (2009).
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Bounds and sharp identified set

• As in example 1, suppose we can prove that
L ≤ ψ(θ0) ≤ U.
• It is not automatically the case that for every z ∈ [L,U],

there is a θ such that z = ψ(θ) and
fY |X (y | x ; θ) = fY |X (y | x ; θ0).

• When this distinction is important, sometimes [L,U] is
referred to as the identified set and ψ(ΘI) as the sharp
identified set.
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Ciliberto and Tamer (2009)

• This is a game-theoretic model of entry into a market.
• Suppose there are two players with random best response

functions,

y1m = 1(α1X1m + δ2y2m + ε1m ≥ 0)

y2m = 1(α2X2m + δ1y1m + ε2m ≥ 0)

for player i in market m.

• For some values of δ1, δ2, α
′
1X1im and α′2X2m, there is a

unique Nash equilibrium.
• For other values of δ1, δ2, α

′
1X1im and α′2X2m, there are

multiple Nash equilibria.
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Ciliberto and Tamer (2009)

• Player 1 enters and 0 does not is a Nash equilibrium if:
−α1X1m ≤ ε1m and −α2X2m − δ1 ≥ ε2m

• Player 0 enters and 1 does not is a Nash equilibrium if:
−α1X1m − δ2 ≥ ε1m and −α2X2m ≤ ε2m

• If δ1, δ2 < 0 then these regions overlap!!
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Ciliberto and Tamer (2009)
• The probability that player 1 enters and 0 does not can be

written as

Pr((ε1, ε2) ∈ R1(X , θ))

+

∫
π(ε1, ε2)1((ε1, ε2) ∈ R2(X , θ))dFε1,ε2

for two distinct regions of R2, where π(ε1, ε2) is an
unspecified, unknown equilibrium selection rule.

• Since π(ε1, ε2) is a probability it has to be between 0 and 1
and therefore,

Pr((ε1, ε2) ∈ R1(X , θ)) ≤ Pr((1,0) | X )

≤ Pr((ε1, ε2) ∈ R1(X , θ)) +

∫
1((ε1, ε2) ∈ R2(X , θ))dFε1,ε2
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Moment inequality estimation

• One approach to estimating the identified set based on
E(wim(yi , xi , θ0)) ≤ 0:
• Define

Qn(θ) =
1
n

n∑
i=1

1(wim(yi , xi , θ) > 0)wim(yi , xi , θ).

• Then Θ̂I = {θ ∈ Θ : Qn(θ) ≤ νn} where νn is nuisance
parameter that must be specified.

• And a confidence set is given by
{θ ∈ Θ : n (Qn(θ)−mint Qn(t)) ≤ cα}, where cα is a critical
value.
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