Lecture 7 - Identification in structural models

Economics 8379
George Washington University

Instructor: Prof. Ben Williams

Identification in parametric models

Del Boca et al. (2014)

Semiparametric and nonparametric identification

Partial identification

Identification

- Let $f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \theta\right)$ denote the conditional density of Y_{i} given X_{i}, which depends on a parameter vector θ, which must be in a parameter space Θ.
- The model is identified at θ_{0} if $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\theta=\theta_{0}$.

Identification

- Let $f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \theta\right)$ denote the conditional density of Y_{i} given X_{i}, which depends on a parameter vector θ, which must be in a parameter space Θ.
- The model is identified at θ_{0} if $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\theta=\theta_{0}$.
- The model is identified if this holds for any possible value of $\theta_{0} \in \Theta$.
- The model is locally identified if this is true only for values of θ in a neighborhood around θ_{0}.

Identification

- If $\theta=\left(\theta_{1}, \theta_{2}\right)$ then it may be that θ_{1} is identified but not θ_{2}.

Identification

- If $\theta=\left(\theta_{1}, \theta_{2}\right)$ then it may be that θ_{1} is identified but not θ_{2}.
- If $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ then $\theta_{1}=\theta_{10}$.

Identification

- If $\theta=\left(\theta_{1}, \theta_{2}\right)$ then it may be that θ_{1} is identified but not θ_{2}.
- If $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ then $\theta_{1}=\theta_{10}$.
- The model is partially identified if $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\theta \in \Theta_{0} \subseteq \Theta$
- Θ_{0} is called the "identified set".

Identification

- It is often the case that we have to restrict Θ in order for the model to be identified.
- Sometimes these restrictions have testable implications.
- Sometimes they don't.
- If θ_{0} is "close" to a point outside Θ where the model is not identified, inference may be effected.
- This is called "weak identification"
- We will see an example of this shortly.

Maximum likelihood

- The MLE of θ is $\arg \max _{\theta \in \Theta} \sum_{i=1}^{n} \log \left(f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \theta\right)\right)$.
- The estimator is consistent if $\mathcal{L}_{n}(\theta) \rightarrow_{p} \mathcal{L}(\theta)$ and $\mathcal{L}(\theta)=\mathcal{L}\left(\theta_{0}\right)$ implies that $\theta=\theta_{0}$.

Maximum likelihood

- The MLE of θ is $\arg \max _{\theta \in \Theta} \sum_{i=1}^{n} \log \left(f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \theta\right)\right)$.
- The estimator is consistent if $\mathcal{L}_{n}(\theta) \rightarrow_{p} \mathcal{L}(\theta)$ and $\mathcal{L}(\theta)=\mathcal{L}\left(\theta_{0}\right)$ implies that $\theta=\theta_{0}$.
- If the model is identified, the likelihood is correctly specified, and $\mathcal{L}(\theta)=E\left(\log \left(f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \theta\right)\right)\right)$ then this condition holds.

Maximum likelihood

- A failure of local identification can often be detected by observing that the likelihood function is flat in some region.
- (Global) identification failures are harder to detect empirically.
- In complex models that require numerical integration or simulation, even local identification failures may be overlooked, particularly when θ is high-dimensional.
- Therefore, generally, identification should be proved theoretically.

MLE example

- Suppose that

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+u_{i} \\
x_{1 i} & =\gamma_{0}+\gamma_{1} x_{2 i}+v_{i}
\end{aligned}
$$

and $\left(u_{i}, v_{i}\right) \mid x_{2 i} \sim N(0, \Sigma)$.

- Consider the likelihood with $Y_{i}=\left(y_{i}, x_{1 i}\right)$ and $X_{i}=x_{2 i}$.
- Let $\theta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \gamma_{0}, \gamma_{1}, \Sigma\right)$.
- The distribution is a bivariate normal with mean $\mu\left(x_{2 i} ; \theta\right)=\left(\beta_{0}+\beta_{1} \gamma_{0}+\beta_{1} \gamma_{1} x_{2 i}+\beta_{2} x_{2 i}, \gamma_{0}+\gamma_{1} x_{2 i}\right)$ and variance

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{u}^{2}+\beta_{1}^{2} \sigma_{v}^{2}+2 \beta_{1} \sigma_{u v} & \beta_{1} \sigma_{v}^{2}+\sigma_{u v} \\
\beta_{1} \sigma_{v}^{2}+\sigma_{u v} & \sigma_{v}^{2}
\end{array}\right)
$$

MLE example

- Identification failure:
- For any $\boldsymbol{s} \in[0,1]$ define $\beta_{1}^{s}=\boldsymbol{s}\left(\beta_{1}+\beta_{2} / \gamma_{1}\right)$ and $\beta_{2}^{s}=(1-s)\left(\beta_{1} \gamma_{1}+\beta_{2}\right)$.
- Then notice that $\beta_{1}^{s} \gamma_{1}+\beta_{2}^{s}=\beta_{1} \gamma_{1}+\beta_{2}$ for every s.

MLE example

- Identification failure:
- For any $\boldsymbol{s} \in[0,1]$ define $\beta_{1}^{s}=\boldsymbol{s}\left(\beta_{1}+\beta_{2} / \gamma_{1}\right)$ and $\beta_{2}^{s}=(1-\boldsymbol{s})\left(\beta_{1} \gamma_{1}+\beta_{2}\right)$.
- Then notice that $\beta_{1}^{s} \gamma_{1}+\beta_{2}^{s}=\beta_{1} \gamma_{1}+\beta_{2}$ for every s.
- Then if we define β_{0}^{s} so that $\beta_{0}^{s}+\beta_{1}^{s} \gamma_{0}=\beta_{0}+\beta_{1} \gamma_{0}$

MLE example

- Identification failure:
- For any $\boldsymbol{s} \in[0,1]$ define $\beta_{1}^{s}=\boldsymbol{s}\left(\beta_{1}+\beta_{2} / \gamma_{1}\right)$ and $\beta_{2}^{s}=(1-\boldsymbol{s})\left(\beta_{1} \gamma_{1}+\beta_{2}\right)$.
- Then notice that $\beta_{1}^{s} \gamma_{1}+\beta_{2}^{s}=\beta_{1} \gamma_{1}+\beta_{2}$ for every s.
- Then if we define β_{0}^{s} so that $\beta_{0}^{s}+\beta_{1}^{s} \gamma_{0}=\beta_{0}+\beta_{1} \gamma_{0}$
- and $\sigma_{u v}^{s}$ so that $\beta_{1}^{s} \sigma_{v}^{2}+\sigma_{u v}^{s}=\beta_{1} \sigma_{v}^{2}+\sigma_{u v}$

MLE example

- Identification failure:
- For any $\boldsymbol{s} \in[0,1]$ define $\beta_{1}^{s}=\boldsymbol{s}\left(\beta_{1}+\beta_{2} / \gamma_{1}\right)$ and $\beta_{2}^{s}=(1-\boldsymbol{s})\left(\beta_{1} \gamma_{1}+\beta_{2}\right)$.
- Then notice that $\beta_{1}^{s} \gamma_{1}+\beta_{2}^{s}=\beta_{1} \gamma_{1}+\beta_{2}$ for every s.
- Then if we define β_{0}^{s} so that $\beta_{0}^{S}+\beta_{1}^{s} \gamma_{0}=\beta_{0}+\beta_{1} \gamma_{0}$
- and $\sigma_{u v}^{s}$ so that $\beta_{1}^{s} \sigma_{v}^{2}+\sigma_{u v}^{s}=\beta_{1} \sigma_{v}^{2}+\sigma_{u v}$
- and σ_{u}^{s} so that

$$
\left(\sigma_{u}^{s}\right)^{2}+\left(\beta_{1}^{s}\right)^{2} \sigma_{v}^{2}+2 \beta_{1}^{s} \sigma_{u v}^{s}=\sigma_{u}^{2}+\beta_{1}^{2} \sigma_{v}^{2}+2 \beta_{1} \sigma_{u v}
$$

MLE example

- Identification failure:
- For any $\boldsymbol{s} \in[0,1]$ define $\beta_{1}^{s}=\boldsymbol{s}\left(\beta_{1}+\beta_{2} / \gamma_{1}\right)$ and $\beta_{2}^{s}=(1-\boldsymbol{s})\left(\beta_{1} \gamma_{1}+\beta_{2}\right)$.
- Then notice that $\beta_{1}^{s} \gamma_{1}+\beta_{2}^{s}=\beta_{1} \gamma_{1}+\beta_{2}$ for every s.
- Then if we define β_{0}^{s} so that $\beta_{0}^{S}+\beta_{1}^{s} \gamma_{0}=\beta_{0}+\beta_{1} \gamma_{0}$
- and $\sigma_{u v}^{s}$ so that $\beta_{1}^{s} \sigma_{v}^{2}+\sigma_{u v}^{s}=\beta_{1} \sigma_{v}^{2}+\sigma_{u v}$
- and σ_{u}^{s} so that $\left(\sigma_{u}^{s}\right)^{2}+\left(\beta_{1}^{s}\right)^{2} \sigma_{v}^{2}+2 \beta_{1}^{s} \sigma_{u v}^{s}=\sigma_{u}^{2}+\beta_{1}^{2} \sigma_{v}^{2}+2 \beta_{1} \sigma_{u v}$
- then $\mathcal{L}(\theta(\boldsymbol{s}))=\mathcal{L}(\theta)$.

MLE example

- Identification failure:
- For any $\boldsymbol{s} \in[0,1]$ define $\beta_{1}^{s}=\boldsymbol{s}\left(\beta_{1}+\beta_{2} / \gamma_{1}\right)$ and $\beta_{2}^{s}=(1-\boldsymbol{s})\left(\beta_{1} \gamma_{1}+\beta_{2}\right)$.
- Then notice that $\beta_{1}^{s} \gamma_{1}+\beta_{2}^{s}=\beta_{1} \gamma_{1}+\beta_{2}$ for every s.
- Then if we define β_{0}^{s} so that $\beta_{0}^{S}+\beta_{1}^{s} \gamma_{0}=\beta_{0}+\beta_{1} \gamma_{0}$
- and $\sigma_{u v}^{s}$ so that $\beta_{1}^{s} \sigma_{v}^{2}+\sigma_{u v}^{s}=\beta_{1} \sigma_{v}^{2}+\sigma_{u v}$
- and σ_{u}^{s} so that

$$
\left(\sigma_{u}^{s}\right)^{2}+\left(\beta_{1}^{s}\right)^{2} \sigma_{v}^{2}+2 \beta_{1}^{s} \sigma_{u v}^{s}=\sigma_{u}^{2}+\beta_{1}^{2} \sigma_{v}^{2}+2 \beta_{1} \sigma_{u v}
$$

- then $\mathcal{L}(\theta(s))=\mathcal{L}(\theta)$.
- Solutions:
- assume that $\sigma_{u v}=0$ (i.e., $X_{1 i}$ is exogenous)
- or assume that $\beta_{2}=0$ (i.e., an exclusion restriction)

MLE example

- Consider the second solution that $\beta_{2}=0$.
- Under this restriction, the model is identified if $\gamma_{1} \neq 0$.
- Even after imposing $\beta_{2}=0$, we have to restrict Θ further to get identification.
- This is an example of a testable restriction.
- But what happens if β_{2} is close to 0 ?

MLE example

- Consider the second solution that $\beta_{2}=0$.
- Under this restriction, the model is identified if $\gamma_{1} \neq 0$.
- Even after imposing $\beta_{2}=0$, we have to restrict Θ further to get identification.
- This is an example of a testable restriction.
- But what happens if β_{2} is close to 0 ?
- weak identification

GMM

- Consider GMM estimation of θ based on the moment conditions, $E\left(w_{i} m\left(y_{i}, x_{i}, \theta_{0}\right)\right)=0$.
- Then the model is identified at θ_{0} if $E\left(w_{i} m\left(y_{i}, x_{i}, \theta\right)\right)=0$ implies that $\theta=\theta_{0}$.
- The model is identified if this holds regardless of the value of θ_{0}.
- The model is locally identified if this is true only for values of θ in a neighborhood around θ_{0}.

GMM

- Consider GMM estimation of θ based on the moment conditions, $E\left(w_{i} m\left(y_{i}, x_{i}, \theta_{0}\right)\right)=0$.
- Then the model is identified at θ_{0} if $E\left(w_{i} m\left(y_{i}, x_{i}, \theta\right)\right)=0$ implies that $\theta=\theta_{0}$.
- The model is identified if this holds regardless of the value of θ_{0}.
- The model is locally identified if this is true only for values of θ in a neighborhood around θ_{0}.
- n.b. It is possible that (a) $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\theta=\theta_{0}$ but (b) there is some $\theta \neq \theta_{0}$ such that $E\left(w_{i} m\left(y_{i}, x_{i}, \theta\right)\right)=0$.

Indirect inference

- Last class we also saw a condition for identification based on indirect inference (i.e., the method of simulated moments).
- The binding function $\theta(\beta)$ must be one-to-one.
- This is often hard to verify.
- Del Boca, Flinn, Wiswall (2014, REStud) provides a good example.

Del Boca et al. (2014) model

- Parents choose time ($\tau_{1, t}$ and $\tau_{2, t}$) and goods $\left(e_{t}\right)$ to invest in child, along with leisure and work hours ($l_{j, t}$ and $h_{j, t}$, $j=1,2)$.
- Child quality: $k_{t+1}=R_{t} \tau_{1, t}^{\delta_{1, t}} \tau_{2, t}^{\delta_{2, t}} e_{t}^{\delta_{3, t}} k_{t}^{\delta_{4, t}}$.
- Period utility: $\boldsymbol{u}=\alpha_{1} \ln 1_{1 t}+\alpha_{2} \ln l_{2 t}+\alpha_{3} \ln \boldsymbol{C}_{t}+\alpha_{4} \ln k_{t}$
- Period budget constraint: $c_{t}+e_{t}=w_{1 t} h_{1 t}+w_{2 t} h_{2 t}+I_{t}$
- Time constraint: $T=l_{j, t}+h_{j, t}+\tau_{j, t}$ for each $j=1,2$

Del Boca et al. (2014) model

- Finite horizon optimization.
- There are M time periods (ages) and parents maximize expected discounted sum of utility over the M periods.
- This requires specification of a terminal value.
- The model can then be solved by backwards induction.

Del Boca et al. (2014) model

- Solution.
- $\tau_{j, t}=\left(T-h_{j, t}\right) \frac{\phi_{j, t}}{\alpha_{j}+\phi_{j, t}}$ and $e_{t}=\left(w_{1 t} h_{1 t}+w_{2 t} h_{2 t}+I_{t}\right) \frac{\phi_{3, t}}{\alpha_{3}+\phi_{3, t}}$ where $\phi_{j, t}=\beta \delta_{j, t} \eta_{t+1}$
- The η_{t} are solved recursively as a function of α_{4} and $\delta_{4, t}$.
- Labor supply also has a convenient closed-form solution, though corner solutions needed to be accounted for.

Del Boca et al. (2014) econometric specifications

- Children are observed at different ages so specify

$$
\delta_{j, t}=\exp \left(\gamma_{j, 0}+\gamma_{j, 1} t\right)
$$

- The TFP sequence includes a stochastic component,

$$
\boldsymbol{R}_{t}=\exp \left(\gamma_{0,0}+\gamma_{0,1} t+\bar{\omega}_{t}\right)
$$

- Individual hetereogeneity in α : distribution $\boldsymbol{G}(\alpha)$ that enforces $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=1$
- Joint wage equations for spouses (education, age, age squared, year of birth, correlated errors).
- Censored process for non-labor income: $I_{t}=\max \left\{0, I_{t}^{*}\right\}$.

Del Boca et al. (2014) identification

- Suppose we observe each child i for two periods starting with period t_{i}.
- We could estimate: $\ln k_{i, t_{i}+1}=\gamma_{0,0}+\gamma_{0,1} t_{i}+\delta_{1, t_{i}} \ln \tau_{i, 1, t_{i}}+$ $\delta_{2, t_{i}} \ln \tau_{i, 2, t_{i}}+\delta_{3, t_{i}} \ln e_{i, t_{i}}+\delta_{4, t_{i}} \ln k_{i, t_{i}}+\eta_{i, t_{i}}$

Del Boca et al. (2014) identification

- The wage equations are harder to estimate because of censoring. We only observe wage $w_{j, t}$ if $h_{j, t}>0$.

Del Boca et al. (2014) identification

- The wage equations are harder to estimate because of censoring. We only observe wage $w_{j, t}$ if $h_{j, t}>0$.
- "Under our model specification, we can 'correct' our estimator of model parameters for the non-randomly missing data using the DGP structure from the model."

Del Boca et al. (2014) identification

- The wage equations are harder to estimate because of censoring. We only observe wage $w_{j, t}$ if $h_{j, t}>0$.
- "Under our model specification, we can 'correct' our estimator of model parameters for the non-randomly missing data using the DGP structure from the model."
- "In this case, both the wage processes and the parameters characterizing preferences and production technologies must be simultaneously estimated."
- Suppose we know β.
- Given $\delta_{j, t}$'s we can estimate α for each household using the input demand equations.
- $G(\alpha)$ is nonparametrically identified

Del Boca et al. (2014) identification

- Suppose we know β.
- Given $\delta_{j, t}$'s we can estimate α for each household using the input demand equations.
- $G(\alpha)$ is nonparametrically identified
- Suppose α is known.
- Use the labor supply equations to estimate β.

Del Boca et al. (2014) identification

- This is not a rigorous identification argument, though for many it is "good enough".
- Issues:
- Is $G(\alpha)$ really identified?
- The input demand and labor supply equations have to be linearly independent.
- Labor supply censoring ...

Del Boca et al. (2014) identification

- Once we're convinced the model is identified, we also need to use moments (auxiliary models) that are sufficient for the binding function to be one-to-one.
- The identification argument should inform us in this regard.

Identification in parametric models

Del Boca et al. (2014)

Semiparametric and nonparametric identification

Partial identification

- A semiparametric model is one in which θ is composed of θ_{1} and θ_{2} where θ_{1} is finite dimensional (i.e., a length K vector) and θ_{2} is infinite-dimensional (i.e., a function, or a vector of functions).
- The model is identified at θ_{0} if $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\theta=\theta_{0}$.

Semiparametric models

- A semiparametric model is one in which θ is composed of θ_{1} and θ_{2} where θ_{1} is finite dimensional (i.e., a length K vector) and θ_{2} is infinite-dimensional (i.e., a function, or a vector of functions).
- The model is identified at θ_{0} if $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\theta=\theta_{0}$.
example:
- Y_{i} is binary and $\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=F_{\varepsilon}\left(\beta^{\prime} X_{i}\right)$.
- Unless we assume that F_{ε} is known (for example, $F_{\varepsilon}=\Phi$), then $\theta_{1}=\beta$ and $\theta_{2}=F_{\varepsilon}$ and this is a semiparametric model.
- This model is not identified without restrictions on F_{ε} and/or β.

Nonparametric models

- A nonparametric model is one in which θ is infinite-dimensional (i.e., a function, or a vector of functions).
- The model is identified at θ_{0} if $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\theta=\theta_{0}$.
- A nonparametric model is one in which θ is infinite-dimensional (i.e., a function, or a vector of functions).
- The model is identified at θ_{0} if $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\theta=\theta_{0}$. example 1:
- Y_{i} is binary and $\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=m\left(X_{i}\right)$.
- Here if we don't assume anything about the function $m(x)$ then this is a nonparametric model.
- The function m is identified (at points x in the support of X_{i}). example 2 :
- Y_{i} is binary and $\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=F_{\varepsilon}\left(m\left(X_{i}\right)\right)$.
- This is a random utility model where $m(x)$ and F_{ε} represent distinct parts of the underlying structural model. This is also a nonparametric model.
- This model is not identified!

Identification of some features

- Sometimes some parameters in the model are identified and others are not.
- In the bivariate normal model above, γ_{0}, γ_{1} and σ_{v} are identified without any restrictions on Θ.
- Sometimes certain combinations of parameters are identified even when none are individually identified.
- In the semiparametric RUM model above, if F_{ε} is differentiable with derivative f_{ε} then

$$
\frac{\partial}{\partial x_{k}} \operatorname{Pr}\left(Y_{i}=1 \mid X_{i}=x\right)=\beta_{k} f_{\varepsilon}\left(\beta^{\prime} x\right)
$$

- Therefore, β_{k} / β_{l} is identified as long as $\beta_{l} \neq 0$.
- This result can be proved under weaker assumptions as well.

Identification of some features

- Both of these cases fit within the following definition.
- A feature of the model, represented by a mapping $\psi(\theta)$, is identified if $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$ implies that $\psi(\theta)=\psi\left(\theta_{0}\right)$.

Partial identification

- The identified set for a parameter θ is

$$
\Theta^{\prime}=\left\{\theta \in \Theta: f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)\right\}
$$

- The identified set depends on θ_{0} and Θ.
- The identified set for a feature of the model, $\psi(\theta)$ is

$$
\psi\left(\Theta^{\prime}\right)=\left\{\psi(\theta): \theta \in \Theta^{\prime}\right\}
$$

Example 1

- Consider estimation of the ATE when the common support condition is not satisfied.
- Let CS denote the common support.
- Suppose $0 \leq Y_{i} \leq 1$ and that $\operatorname{Pr}\left(X_{i} \in C S\right)=\pi$.
- Note that

$$
\begin{aligned}
A T E & =\int \delta(x) f_{X}(x) d x \\
& =\int_{C S} \delta(x) f_{X}(x) d x+\int_{C S^{c}} \delta(x) d x
\end{aligned}
$$

Example 1

- First, $-(1-\pi) \leq \int_{C S^{c}} \delta(x) d x \leq 1-\pi$.
- Second, the ATE on the common support is $A T E_{C S}=\int_{C S} \delta(x)^{\frac{f_{X}(x)}{\pi}} d x$.
- Therefore,

$$
A T E_{C S} \pi-(1-\pi) \leq A T E \leq A T E_{C S} \pi+(1-\pi)
$$

- If $\delta(x)$ is identified for $x \in C S$ then these two bounds are identified, meaning that the identified set for ATE is the interval $\left[A T E_{C S} \pi-(1-\pi)\right.$, ATE $\left._{C S} \pi+(1-\pi)\right]$.

Example 2

- Economic models with multiple equilibria only provide moment inequalities.
- Suppose that $E\left(w_{i} m\left(y_{i}, x_{i}, \theta_{0}\right)\right) \leq 0$.
- Then the identified set for θ is

$$
\Theta^{\prime}=\left\{\theta \in \Theta: E\left(w_{i} m\left(y_{i}, x_{i}, \theta\right)\right) \leq 0\right\}
$$

- See, e.g., Manski and Tamer (2002) and Ciliberto and Tamer (2009).

Bounds and sharp identified set

- As in example 1, suppose we can prove that $L \leq \psi\left(\theta_{0}\right) \leq U$.
- It is not automatically the case that for every $z \in[L, U]$, there is a θ such that $z=\psi(\theta)$ and $f_{Y \mid X}(y \mid x ; \theta)=f_{Y \mid X}\left(y \mid x ; \theta_{0}\right)$.
- When this distinction is important, sometimes $[L, U]$ is referred to as the identified set and $\psi\left(\Theta^{\prime}\right)$ as the sharp identified set.

Ciliberto and Tamer (2009)

- This is a game-theoretic model of entry into a market.
- Suppose there are two players with random best response functions,

$$
\begin{aligned}
& y_{1 m}=\mathbf{1}\left(\alpha_{1} X_{1 m}+\delta_{2} y_{2 m}+\varepsilon_{1 m} \geq 0\right) \\
& y_{2 m}=\mathbf{1}\left(\alpha_{2} X_{2 m}+\delta_{1} y_{1 m}+\varepsilon_{2 m} \geq 0\right)
\end{aligned}
$$

for player i in market m.

Ciliberto and Tamer (2009)

- This is a game-theoretic model of entry into a market.
- Suppose there are two players with random best response functions,

$$
\begin{aligned}
& y_{1 m}=\mathbf{1}\left(\alpha_{1} X_{1 m}+\delta_{2} y_{2 m}+\varepsilon_{1 m} \geq 0\right) \\
& y_{2 m}=\mathbf{1}\left(\alpha_{2} X_{2 m}+\delta_{1} y_{1 m}+\varepsilon_{2 m} \geq 0\right)
\end{aligned}
$$

for player i in market m.

- For some values of $\delta_{1}, \delta_{2}, \alpha_{1}^{\prime} X_{1 i m}$ and $\alpha_{2}^{\prime} X_{2 m}$, there is a unique Na ash equilibrium.
- For other values of $\delta_{1}, \delta_{2}, \alpha_{1}^{\prime} X_{1 i m}$ and $\alpha_{2}^{\prime} X_{2 m}$, there are multiple Nash equilibria.

Ciliberto and Tamer (2009)

- Player 1 enters and 0 does not is a Nash equilibrium if: $-\alpha_{1} X_{1 m} \leq \varepsilon_{1 m}$ and $-\alpha_{2} X_{2 m}-\delta_{1} \geq \varepsilon_{2 m}$

Ciliberto and Tamer (2009)

- Player 1 enters and 0 does not is a Nash equilibrium if: $-\alpha_{1} X_{1 m} \leq \varepsilon_{1 m}$ and $-\alpha_{2} X_{2 m}-\delta_{1} \geq \varepsilon_{2 m}$
- Player 0 enters and 1 does not is a Nash equilibrium if: $-\alpha_{1} X_{1 m}-\delta_{2} \geq \varepsilon_{1 m}$ and $-\alpha_{2} X_{2 m} \leq \varepsilon_{2 m}$

Ciliberto and Tamer (2009)

- Player 1 enters and 0 does not is a Nash equilibrium if: $-\alpha_{1} X_{1 m} \leq \varepsilon_{1 m}$ and $-\alpha_{2} X_{2 m}-\delta_{1} \geq \varepsilon_{2 m}$
- Player 0 enters and 1 does not is a Nash equilibrium if: $-\alpha_{1} X_{1 m}-\delta_{2} \geq \varepsilon_{1 m}$ and $-\alpha_{2} X_{2 m} \leq \varepsilon_{2 m}$
- If $\delta_{1}, \delta_{2}<0$ then these regions overlap!!

Ciliberto and Tamer (2009)

- The probability that player 1 enters and 0 does not can be written as

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(\varepsilon_{1}, \varepsilon_{2}\right) \in R_{1}(X, \theta)\right) \\
& +\int \pi\left(\varepsilon_{1}, \varepsilon_{2}\right) \mathbf{1}\left(\left(\varepsilon_{1}, \varepsilon_{2}\right) \in R_{2}(X, \theta)\right) d F_{\varepsilon_{1}, \varepsilon_{2}}
\end{aligned}
$$

for two distinct regions of \mathbb{R}^{2}, where $\pi\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is an unspecified, unknown equilibrium selection rule.

- The probability that player 1 enters and 0 does not can be written as

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(\varepsilon_{1}, \varepsilon_{2}\right) \in R_{1}(X, \theta)\right) \\
& +\int \pi\left(\varepsilon_{1}, \varepsilon_{2}\right) \mathbf{1}\left(\left(\varepsilon_{1}, \varepsilon_{2}\right) \in R_{2}(X, \theta)\right) d F_{\varepsilon_{1}, \varepsilon_{2}}
\end{aligned}
$$

for two distinct regions of \mathbb{R}^{2}, where $\pi\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is an unspecified, unknown equilibrium selection rule.

- Since $\pi\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is a probability it has to be between 0 and 1 and therefore,

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(\varepsilon_{1}, \varepsilon_{2}\right) \in R_{1}(X, \theta)\right) \leq \operatorname{Pr}((1,0) \mid X) \\
& \leq \operatorname{Pr}\left(\left(\varepsilon_{1}, \varepsilon_{2}\right) \in R_{1}(X, \theta)\right)+\int \mathbf{1}\left(\left(\varepsilon_{1}, \varepsilon_{2}\right) \in R_{2}(X, \theta)\right) d F_{\varepsilon_{1}, \varepsilon_{2}}
\end{aligned}
$$

Moment inequality estimation

- One approach to estimating the identified set based on $E\left(w_{i} m\left(y_{i}, x_{i}, \theta_{0}\right)\right) \leq 0:$
- Define

$$
Q_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(w_{i} m\left(y_{i}, x_{i}, \theta\right)>0\right) w_{i} m\left(y_{i}, x_{i}, \theta\right)
$$

- Then $\hat{\Theta}^{\prime}=\left\{\theta \in \Theta: Q_{n}(\theta) \leq \nu_{n}\right\}$ where ν_{n} is nuisance parameter that must be specified.
- And a confidence set is given by $\left\{\theta \in \Theta: n\left(Q_{n}(\theta)-\min _{t} Q_{n}(t)\right) \leq c_{\alpha}\right\}$, where c_{α} is a critical value.

