MSL example

SM example F

RNG |

ance sampling

Conclusion o

Lecture 6 – Simulation-based methods for nonlinear models

Economics 8379 George Washington University

Instructor: Prof. Ben Williams

MSL example

M example R

RNG 0000000 rtance sampling

Conclusion O

Simulation-based estimation methods

MSL example

MSM example

How do we generate random numbers anyway?

Importance sampling

Conclusion

traditional MLE and GMM

MLE:

$$\mathcal{L}(\theta) = \log f_{y_1,\dots,y_n|x_1,\dots,x_n}^{\theta} = \sum_{i=1}^n \log(f_{y_i|x_i}^{\theta})$$

- Computation of the MLE involves evaluation the likelihood (and possibly it's derivatives) iteratively for many values of θ.
- This is difficult when $f_{y_i|x_i}^{\theta}$ is difficult to compute.

traditional MLE and GMM

- GMM based on moments $E(w_i m(y_i, x_i, \theta)) = 0$:
 - The GMM estimator minimizes

$$\left(\sum_{i=1}^n w_i m(y_i, x_i, \theta)\right)' W\left(\sum_{i=1}^n w_i m(y_i, x_i, \theta)\right)$$

- Computation involves evaluating this objective function (and possibly it's derivatives) iteratively for many values of θ.
- This is difficult when $m(y_i, x_i, \theta)$ is difficult to compute.

MSL example

SM example R

(NG II

portance sampling

Conclusion

MLE vs GMM

- Two reasons $f_{y_i|x_i}$ or $m(y_i, x_i, \theta)$ can be difficult to compute:
 - latent variable: $f_{y_i|x_i}^{\theta} = \int f_{y_i|x_i,u}^{\theta} f_u du$
 - *y_i* is determined conditional on *x_i* and unobserved shock(s) via an economic model which may involve dynamic optimization, solution of a nash equilibrium, etc.

VISL example

SM example

0000000

iportance samplin 00 Conclusion

Some examples

Multinomial probit:

$$\ell(\beta) = \sum_{i=1}^{n} \sum_{j=1}^{J} \mathbf{1}(y_i = j) \log(\Pr(y_i = j \mid X_i))$$

where

$$Pr(y_i = j \mid X_i) = Pr(X'_{ij}\beta + \varepsilon_{ij} \ge \max_{l \neq j} X'_{il}\beta + \varepsilon_{il})$$

and $\varepsilon_i = (\varepsilon_{i1}, \dots, \varepsilon_{iJ}) \sim N(0, \Sigma)$

MSL example

SM example F

NNG II 0000000 0

nportance samplin

Conclusio o

Some examples

· Random coefficients logit: same form for likelihood with

$$Pr(y_i = j \mid X_i) = \int \frac{\exp(X'_{ij}\beta_i)}{\sum_{l=1}^{J} \exp(X'_{il}\beta_l)} f(\beta_i) d\beta_i$$

and $\beta_i \sim N(\bar{\beta}, \Sigma_{\beta})$

Some examples

· Random coefficients logit: same form for likelihood with

$$Pr(y_i = j \mid X_i) = \int \frac{\exp(X'_{ij}\beta_i)}{\sum_{l=1}^{J}\exp(X'_{ij}\beta)} f(\beta_i) d\beta_i$$

and $\beta_i \sim N(\bar{\beta}, \Sigma_{\beta})$

 Both of these can allow for a choice-invariant regressor with a choice-specific coefficient as well (γ'_iw_i).

MSL example

ISM example F

111G 1111

mportance sampli

Conclusion O

Some examples

- Dynamic discrete choice models.
 - Given state variables {*x_{it}*, ε_{it}} agent *i* chooses control variables {*y_{it}*} to maximize
 E (∑_{t=0}[∞] β^t(u(x_{it}, y_{it}, θ) + ε_{it}) | x_{i0}, ε_{i0})

OSL example

SM example R

111G III

mportance samplir

Conclusion

Some examples

- Dynamic discrete choice models.
 - Given state variables $\{x_{it}, \varepsilon_{it}\}$ agent *i* chooses control variables $\{y_{it}\}$ to maximize $E\left(\sum_{t=0}^{\infty} \beta^t(u(x_{it}, y_{it}, \theta) + \varepsilon_{it}) \mid x_{i0}, \varepsilon_{i0}\right)$
 - There is a Bellman equation solution and if y_{it} is binary, Rust (1987) provides conditions under which

$$Pr(y_{it} = 1 \mid x_{it}, \theta) = \frac{\exp(u(x_{it}, 1, \theta) + \beta EV(x_{it}, 1, \theta))}{\exp(u(x_{it}, 0, \theta) + \beta EV(x_{it}, 0, \theta)) + \exp(u(x_{it}, 1, \theta) + \beta EV(x_{it}, 1, \theta))}$$

where

$$EV(x, y, \theta) = \int \log \left(\sum_{y'=0,1} \exp(u(x', y', \theta) + \beta EV(x', y', \theta)) \right) p(dx' \mid x, y, \theta)$$

MSL example

SM example RI

-ING III 2000000 00 ortance sampling

Conclusion

Some examples

- Dynamic discrete choice models.
 - Given state variables $\{x_{it}, \varepsilon_{it}\}$ agent *i* chooses control variables $\{y_{it}\}$ to maximize $E\left(\sum_{t=0}^{\infty} \beta^t(u(x_{it}, y_{it}, \theta) + \varepsilon_{it}) \mid x_{i0}, \varepsilon_{i0}\right)$
 - There is a Bellman equation solution and if y_{it} is binary, Rust (1987) provides conditions under which

$$Pr(y_{it} = 1 \mid x_{it}, \theta) = \frac{\exp(u(x_{it}, 1, \theta) + \beta EV(x_{it}, 1, \theta))}{\exp(u(x_{it}, 0, \theta) + \beta EV(x_{it}, 0, \theta)) + \exp(u(x_{it}, 1, \theta) + \beta EV(x_{it}, 1, \theta))}$$

where

$$EV(x, y, \theta) = \int \log \left(\sum_{y'=0,1} \exp(u(x', y', \theta) + \beta EV(x', y', \theta)) \right) p(dx' \mid x, y, \theta)$$

• We need to solve for the *expected value function*, *EV*, to evaluate the likelihood.

MSL example

SM example F

10000000 (

ortance sampling

Conclusion

Some examples

- Dynamic discrete choice models.
 - Solving for the expected value function involves an approximation.
 - The method of simulated moments is an alternative.

example MSM

SM example

NG Importai

ortance sampling

Conclusion

Maximum Simulated Likelihood

- Suppose that $f(y_i | X_i, \theta) = \int g(y_i | X_i, u, \theta) \psi(u) du$.
- simulate $u_{i1}, \ldots, u_{iS} \sim_{i.i.d.} \psi(\cdot)$ for each *i* and replace $\ell_i(\theta) = \log(f(y_i \mid X_i, \theta))$ with

$$\hat{\ell}_i(\theta) = \log\left(S^{-1}\sum_{s=1}^S g(y_i \mid X_i, u_{is}, \theta)\right)$$

• then $\hat{\theta}_{MSL} = \arg \max_{\theta} \sum_{i=1}^{n} \hat{\ell}_{i}(\theta)$.

MSL example

ISM example

IG Importa

ortance sampling

Conclusior o

Maximum Simulated Likelihood

- Only consistent and asymptotically normal if $\sqrt{n}/S \rightarrow 0$. Take *S* as a multiple of the sample size if feasible.
- do not draw new simulation sample in each iteration of the optimization routine!
- Sometimes this naive simulation can be improved by importance sampling and other variance-reduction techniques. See 12.7 in CT.

Method of Simulated Moments

- Suppose we want to estimate θ based on the moment condition: E(w_im(y_i, x_i, θ₀)) = 0
- where computing $m(y_i, x_i, \theta) = \int h(y_i, x_i, u, \theta) \psi(u) du$ requires simulation
- The MSM estimator is computed by following these steps:
 - draw u_{is} , s = 1, ..., S independently from ψ for each i
 - and compute $\hat{m}(y_i, x_i, \theta) = S^{-1} \sum_{s=1}^{S} h(y_i, x_i, u_{is}, \theta)$
 - minimize

$$\left(\sum_{i=1}^n w_i \hat{m}(y_i, x_i, \theta)\right)' W\left(\sum_{i=1}^n w_i \hat{m}(y_i, x_i, \theta)\right)$$

MSL example

VISM example

IG Importanc

sampling Con

Method of Simulated Moments

Because E(m̂(y_i, x_i, θ) | y_i, x_i) = m(y_i, x_i, θ) (unbiased simulation), if the usual GMM conditions are satisfied then the MSM estimator is a consistent, asymptotically normal estimator

VSM example

IG Important

ce sampling Co o

Method of Simulated Moments

- Because E(m̂(y_i, x_i, θ) | y_i, x_i) = m(y_i, x_i, θ) (unbiased simulation), if the usual GMM conditions are satisfied then the MSM estimator is a consistent, asymptotically normal estimator
- if, in addition, $S\to\infty,$ then the estimator is asymptotically equivalent to the GMM estimator
- for finite *S*, the asymptotic variance is inflated by a factor of $1 + S^{-1}$, though this can be improved, e.g. by importance sampling

MSL example

ISM example

IG Importa

ortance sampling

Conclusior o

Method of Simulated Moments

- Variance estimation requires either simulation or bootstrap
- Gourieroux and Monfort (1991) provide more general conditions under which $S \rightarrow \infty$ is not necessary
- Pakes and Pollard (1989) provide some examples.

MSL example

SM example RI

ING ING 000000 0

ortance sampling

Conclusion

Indirect inference

- Ingredients:
 - economic model, e.g., $y_i = G(X_i, u_i; \beta)$ for i = 1, ..., n and $u_i \sim_{iid} F_u$
 - auxiliary model, e.g., a likelihood: $\ell_n(\theta) = \sum_{i=1}^n \log(f(y_i \mid X_i, \theta))$
 - an auxiliary estimate, e.g., $\hat{\theta} = \arg \max_{\theta} \ell_n(\theta)$

MSL example

SM example RI

ING III

ortance sampling

Conclusion

Indirect inference

- For any value of β ,
 - simulate {y_i^m(β)} from the economic model for m=1,...,M
 - obtain $\tilde{\theta}(\beta)$ by maximizing

$$\sum_{m=1}^{M} \sum_{i=1}^{n} \log(f(y_i^m(\beta) \mid X_i, \theta))$$

• Alternatively, get *M* different estimates, $\tilde{\theta}_1(\beta), \ldots, \tilde{\theta}_M(\beta)$ and use $\tilde{\theta}(\beta) = M^{-1} \sum_{m=1}^M \tilde{\theta}_m(\beta)$

ple MSM exam

RNG 1

mportance samplir

Conclusion

Indirect inference

• The indirect inference estimator of β is given by

$$\hat{eta} = rg\min_eta \mathcal{D}(\hat{ heta}, ilde{ heta}(eta))$$

- D is a metric function; Smith (2008) suggests Wald, LR, LM metrics
- consistent and asymptotically normal for *M* fixed, $n \rightarrow \infty$
- variance inflate by $1 + M^{-1}$
- very easy to implement despite the lack of efficiency

MSL example

SM example R

ING IMP

ance sampling

Conclusion

Indirect inference

- The following are typical conditions required for indirect inference:
 - the economic model is correctly specified and well-behaved
 - the auxiliary likelihood function is well-behaved in the limit, despite the fact that it is misspecified
 - binding function
 - $\ell_n(\theta) \rightarrow_p \ell(\theta; \beta, F_u)$ when the data is generated by the economic model with parameters β and distribution F_u
 - define $\theta(\beta) = \arg \max_{\theta} \ell(\theta; \beta, F_u)$
 - $\theta_0 = \theta(\beta_0)$ is the pseudo-true value
 - $\theta(\beta)$ is the binding function

MSL example

M example RI

0000000 0

ortance sampling

Conclusio o

Indirect inference

• under appropriate regularity conditions, $\hat{\theta} \rightarrow_{\rho} \theta_0$ and $\tilde{\theta}(\beta) \rightarrow_{\rho} \theta(\beta)$

ISL example

SM example RI

1NG IM

nportance samplin 00 Conclusior o

Indirect inference

- under appropriate regularity conditions, $\hat{\theta} \rightarrow_{p} \theta_{0}$ and $\tilde{\theta}(\beta) \rightarrow_{p} \theta(\beta)$
- thus the identification condition: is β_0 the unique solution to $\theta_0 = \theta(\beta)$?
- requires $dim(\theta) \ge dim(\beta)$
- simulation avoids needing to know the binding function

MSL example •oooooooo SM example F

RNG 0000000 Importance samp

Conclusio o

Simulation-based estimation methods

MSL example

MSM example

How do we generate random numbers anyway?

Importance sampling

Conclusion

MSL example MSM example

nple RNG

Importance sa

Conclusio o

Random coefficient logit model

• Consider the binary outcome model

$$Y_i = \mathbf{1}(\beta_0 + \beta_{1i}X_i + \varepsilon_i \ge 0)$$

where

ε_i is iid logistic

•
$$\beta_{1i} = \beta_1 + \sigma_{\beta_1} u_i$$
 where u_i is iid $N(0, 1)$

Then

$$Pr(Y_i = 1 \mid X_i) = \int \frac{\exp(\beta_0 + \beta_1 X_i + \sigma_{\beta_1} X_i u)}{1 + \exp(\beta_0 + \beta_1 X_i + \sigma_{\beta_1} X_i u)} \phi(u) du$$

MSL example MSM e

VI example RN

NG IM 000000 00

oortance sampling

Conclusio o

MLE for the RL model

- Let $\theta = (\beta_0, \beta_1, \sigma_{\beta_1})$.
- The log likelihood is

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log \left(\int \pi(Y_i \mid X_i, u, \theta) \phi(u) du \right)$$

where

$$\pi(y \mid x, u, \theta) = \begin{cases} \frac{\exp(\beta_0 + \beta_1 x + \sigma_{\beta_1} x u)}{1 + \exp(\beta_0 + \beta_1 x + \sigma_{\beta_1} x u)} & \text{if } y = 1\\ \frac{1}{1 + \exp(\beta_0 + \beta_1 x + \sigma_{\beta_1} x u)} & \text{if } y = 0 \end{cases}$$

MSL for the RL model

• First, simulate $u_{i1}, \ldots, u_{iS} \sim_{i.i.d.} \psi(\cdot)$ for each *i*

MSL example

Let

$$\hat{\ell}_i(\theta) = \log\left(S^{-1}\sum_{s=1}^S \pi(Y_i \mid X_i, u_{is}, \theta)\right)$$

• Then
$$\hat{\theta}_{MSL} = \arg \max_{\theta} \sum_{i=1}^{n} \hat{\ell}_{i}(\theta)$$
.

MSL example MSM e

SM example R

000000 00

ortance sampling

Conclusio o

MSL for the RL model

• MSL replaces choice probabilities,

$$\pi(\mathbf{y}_i \mid \mathbf{X}_i, \theta) = \int \pi(\mathbf{Y}_i \mid \mathbf{X}_i, u, \theta) \phi(u) du,$$

• with simulated choice probabilities:

$$\hat{\pi}(\mathbf{y}_i \mid \mathbf{X}_i, \theta) = \mathbf{S}^{-1} \sum_{s=1}^{S} \pi(\mathbf{Y}_i \mid \mathbf{X}_i, \mathbf{u}_{is}, \theta)$$

MSL for the RL model

MSL example

 The estimated asymptotic variance can be derived using equation (12.21) in CT:

$$\hat{V} = \left(\sum_{i=1}^{n} \left(\hat{h}_{i}(\hat{\theta})\hat{h}_{i}(\hat{\theta})'\right)\right)^{-1}$$
$$\hat{h}_{i}(\hat{\theta}) = \frac{(-1)^{1-Y_{i}}\sum_{s=1}^{S} W_{is}\pi(1 \mid X_{i}, u_{is}, \hat{\theta})\pi(0 \mid X_{i}, u_{is}, \hat{\theta})}{\sum_{s=1}^{S} \pi(Y_{i} \mid X_{i}, u_{is}, \hat{\theta})}$$

.

where $W_i = (1, X_i, X_i u_{is})'$

MSL example

SM example F

NG Impor

sampling Con

demonstration of MSL for the RL model

• A simple Matlab code snippet:

IGATE		EDIT	BREAKPOINTS	RUN		
ams + allfiles + everything + teaching + current semester + econ8379_spring2018 + february 21						
۲	Z Editor – /Users/bwilliams/allfiles/everything/teaching/current semester/econ8379_spring2018/february 14/					
	+1	hazards.m	🛛 RLsimlik.m 🗙 R	LMSL.m 🗙 OLSsimmorr	n.m 🗙 OLSMSM.m 🗶 RLsim\	/.m 🛛 OLSindinf.m
- 11	1 ☐ function RLsimlik=RLsimlik(Y,X,U,theta)					
- 11	2					
- 11	<pre>3 4 4 - RLsimlik=sum(log(mean(cp(Y,X,U,theta),2))); 5 6</pre>					
- 11						
	12					
<pre>13 - cp=exp(bet0*ones(n,S)+bet1*X*ones(1,S)+sig</pre>					ones(1,S)).*U).^(Y*ones(1,S))
	14 ./(ones(n,S)+exp(bet0*ones(n,S)+bet1*X*ones(1,S)+sig*(X*ones(1,S)).*U))					U))
	15					
	Command Window					

Command Window

New to MATLAB? See resources for Getting Started.

MSL example

SM example

NG Impor

tance sampling

Conclusion o

demonstration of MSL for the RL model

• Then the estimator is computed, e.g., by

maxer=fmincon(@(x) -RLsimlik(Y,X,U,x),[0 1 .5],[],[],[],[],[],[-Inf -Inf 0],[]);

MSL example

SM example

NG Impor

tance sampling

Conclusion o

demonstration of MSL for the RL model

• Then the estimator is computed, e.g., by

maxer=fmincon(@(x) -RLsimlik(Y,X,U,x),[0 1 .5],[],[],[],[],[],[-Inf -Inf 0],[]);

MSL example MSM examo

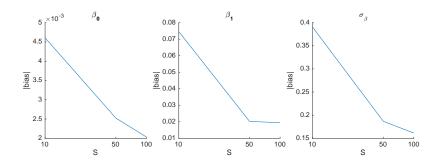
RNG Ir

Importance sampling

Conclusion o

demonstration of MSL for the RL model

The following graph shows bias as a function of *S*.



xample MSM

MSM example RN

NG IM 000000 00

nportance samplin

Conclusio o

A nonseparable model

- Suppose $Y_i = g(X_i, V_i \mid \beta)$.
 - for example, $g(x, v \mid \beta) = x'\beta + v$
- Further suppose that V_i is independent of X_i and $V_i \sim N(0, \sigma_V^2)$.

GMM for the nonseparable model

MSM example

• Let
$$\theta = (\beta, \sigma_V)$$
 and

$$m(y_i, x_i, \theta) = \begin{pmatrix} y_i - E(y_i \mid x_i, \theta) \\ x_i(y_i - E(y_i \mid x_i, \theta)) \\ y_i^2 - E(y_i^2 \mid x_i, \theta) \end{pmatrix}$$

Then the moment conditions *E*(*m*(*y_i*, *x_i*, θ)) = 0 can be used to estimate θ.

MSM example F

IG Importance

tance sampling C

O

GMM for the nonseparable model

- If $g(x, v | \beta) = x'\beta + v$ then $E(y_i | x_i, \theta) = x'_i\beta$ and $E(y_i^2 | x_i, \theta) = (x'_i\beta)^2 + \sigma_V^2$ and the GMM estimator is equivalent to OLS.
- More generally,

$$E(y_i \mid x_i, \theta) = \int g(x, \sigma_V u \mid \beta) \phi(u) du$$
$$E(y_i^2 \mid x_i, \theta) = \int g(x, \sigma_V u \mid \beta)^2 \phi(u) du$$

and these may not have a closed form solution.

MSM for the nonseparable model

MSM example

• First, simulate $u_{i1}, \ldots, u_{iS} \sim_{i.i.d.} \psi(\cdot)$ for each *i*

Let

$$\hat{g}_1(x_i,\theta) = S^{-1} \sum_{s=1}^S g(x_i, \sigma_V u_{is} \mid \beta)$$
$$\hat{g}_2(x_i,\theta) = S^{-1} \sum_{s=1}^S g(x_i, \sigma_V u_{is} \mid \beta)^2,$$

 $\hat{m}_1(y_i, x_i, \theta) = y_i - \hat{g}_1(x_i, \theta), \ \hat{m}_2(y_i, x_i, \theta) = x_i(y_i - \hat{g}_1(x_i, \theta)),$ and $\hat{m}_3(y_i, x_i, \theta) = y_i - \hat{g}_2(x_i, \theta).$

Then define

$$Q_N(\theta) = \left(n^{-1}\sum_{i=1}^n \hat{m}(y_i, x_i, \theta)\right)' \left(n^{-1}\sum_{i=1}^n \hat{m}(y_i, x_i, \theta)\right)$$

where $\hat{m} = (\hat{m}_1, \hat{m}_2, \hat{m}_3)'$.

1

MSM example

G Importance samp

Conclusior o

MSM for the nonseparable model

CT call m̂(y_i, x_i, θ) the frequency simulator. This estimator:
is unbiased, e.g.,

$$E(\hat{m}_1(y_i, x_i, \theta)) = E(y_i) - E\left(S^{-1}\sum_{s=1}^{S} E(g(x_i, \sigma_V u_{is} \mid \beta) \mid x_i, \theta)\right)$$
$$= E(y_i) - E\left(\int g(x_i, \sigma_V u \mid \beta)\phi(u)du\right)$$
$$= E(y_i - E(y_i \mid x_i, \theta))$$

• has variance $Var(\hat{m}) = (1 + \frac{1}{s}) Var(m)$

G Importan

ortance sampling

Conclusion o

MSM for the nonseparable model

- The estimated asymptotic variance will just be $1 + S^{-1}$ times the estimated asymptotic variance of the conventional GMM estimator.
 - This entails estimating [∂]/_{∂θ} m(y_i, x_i, θ), which requires another simulation.
- The bootstrap is commonly used instead.

MSM example

NG Importa

ce sampling Co

o

demonstration of MSM for the ns model

• A simple Matlab code snippet:

iams + allfiles + everything + teaching + current semester + econ8379_spring2018 + february 21

📝 Edit	tor – /Users/bwilliams/allfiles/everything/teaching/current semester/econ8379_spring2018/fe					
+1	hazards.m 🛪 RLsimlik.m 🛪 RLMSL.m 🛪 OLSsimmom.m 🛪 OLSMSM.m 🛪 RLsimV.m 🛪					
 1	□ function OLSsimmom=OLSsimmom(Y,X,U,theta)					
 2						
 3 -	n=length(Y);					
 4 -	S=size(U,2);					
 5 -	<pre>bet0=theta(1);</pre>					
 6 -	<pre>bet1=theta(2);</pre>					
 7 -	<pre>sig=theta(3);</pre>					
 8						
 <pre>9 - mom(1)=sum(mean(Y*ones(1,S)-(bet0*ones(n,S)+bet1*X*ones(1,S)+si</pre>						
 10 -	<pre>mom(2)=X'*mean(Y*ones(1,S)-(bet0*ones(n,S)+bet1*X*ones(1,S)+sig*U),2);</pre>					
 11 -	<pre>mom(3)=sum(mean(Y.^2*ones(1,S)-(bet0*ones(n,S)+bet1*X*ones(1,S)+sig*U).^2,2));</pre>					
 12 -	mom;					
 13 -	<pre>_ OLSsimmom=(mom/n)*(mom/n)';</pre>					
14						

Indirect inference for the ns model

- an alternative to MSM is to define the objective function *Q_n*(γ) by following these steps
 - 1. simulate the data *M* times from the nonseparable model with parameter $\gamma = (\beta, \sigma_V)$:

$$\mathbf{y}_i^m = \mathbf{g}(\mathbf{x}_i, \sigma_V \mathbf{u}_{im} \mid \beta)$$

- 2. for each simulated dataset, compute the OLS parameter estimates, $\tilde{\theta}^m(\gamma)$
- 3. average these estimates across the *M* simulations, $\tilde{\theta}(\gamma) = M^{-1} \sum_{m=1}^{M} \tilde{\theta}^{m}(\gamma)$
- 4. measure the distance between these average estimates and the estimate from the real data, call this $Q_n(\gamma) = d(\hat{\theta}, \tilde{\theta}(\gamma))$
- Then let $\hat{\gamma} = \arg \min_{\gamma} Q_n(\gamma)$

demonstration of Indirect Inference for the ns model

• A simple Matlab code snippet:

NAVIGATE	EDIT	BREAKPOINTS	RUN		
Jsers 🕨 bwilliams 🕨	allfiles + everything +	teaching + current se	mester 🕨 econ8379_spr	ing2018 ⊧ february 21	
۲	📝 Editor – /Users/bv	williams/allfiles/every	hing/teaching/current	t semester/econ8379_s	pring2018/febru
, Î.Î.	1 hazarde CurrentFolder Actions 2 a n=length(Y 4 S=size(U,2) 5 bet0=theta 6 bet1=theta 7 sig=theta(8 W=[ones(n,) 9 generate 10 Yt=bet0*hot 11 % estimate 13 for s=1:5, 14 btild 15 stild= 16 end 17 bhat=inv(W 18 shat=sqrt(19 20 20 that[bhat 21 ttild=[btiat]	<pre>RLsimlik.m × RLM LSindinf=OLSindinf();); (1); (2); 3); 1) X1; data es(n,S)+bet1*X*ones OLS :,s)=inx(W'*W)*W'*Y; qrt((Yt(:,s)-W*bti '*W)*W'*Y; (Y-W*bhat)'*(Y-W*bfi</pre>	<pre>#SL.m × OLSsimmom Y,X,U,theta) ((1,S)+sig*U; ((1,S); .ld(:,s))'*(Yt(:,s)- nat)/n);</pre>	.m ×ÌOLSMSM.m ×Ì	RLsimV.m ×

G Importanc

oling Conclu

Further notes on indirect inference

- The asymptotic variance can be derived using standard results for m-estimators. See formula in Gourieroux, Monfort, Renault (1993).
 - Requires asymptotic covariance matrix for $\hat{\theta}$.
 - Also requires an estimate of $\frac{\partial}{\partial \gamma} \theta(\gamma)$.
- Gourieroux, Monfort, Renault (1993) also discuss an optimal weighting matrix when d(θ̂, θ̃(γ)) = (θ̂ - θ̃(γ))'W(θ̂ - θ̃(γ))
- Use of bootstrap is very common.

IG Importance

Conclusio

Further notes on indirect inference

- Smith (2008) says to instead define $\tilde{\theta}(\gamma)$ as the maximizer of the average of the *m* likelihoods.
 - Gourieroux, Monfort, Renault (1993) show that this is asymptotically equivalent in this model (and in fact most models).
- Many people refer to this as a method of simulated moments or simulated method of moments.
- Generally,
 ô, the auxiliary model, does not have to be a huge system of equations but instead can be different combinations of separate estimators.

MSL example

SM example

RNG •000000 ortance sampling

Conclusior o

Simulation-based estimation methods

MSL example

MSM example

How do we generate random numbers anyway?

Importance sampling

Conclusion

RNG Importance sam

Conclusion o

Inverse probability integral transform

- Suppose *u*₁,..., *u_n* are independent draws from a *Uniform*(0, 1) distribution.
- Let F_X denote the cdf of a particular distribution.

• Then let
$$X_i = F_X^{-1}(u_i)$$
.

$$Pr(X_i \le x) = Pr(u_i \le F_X(x))$$

= $F_X(x)$

Inverse probability integral transform

- Suppose *u*₁,..., *u_n* are independent draws from a *Uniform*(0, 1) distribution.
- Let F_X denote the cdf of a particular distribution.
- Then let $X_i = F_X^{-1}(u_i)$.

$$Pr(X_i \le x) = Pr(u_i \le F_X(x))$$

= $F_X(x)$

• \implies X_1, \ldots, X_n are independent draws from the distribution with cdf F_X .

Inverse probability integral transform

- Suppose *u*₁,..., *u_n* are independent draws from a *Uniform*(0, 1) distribution.
- Let F_X denote the cdf of a particular distribution.
- Then let $X_i = F_X^{-1}(u_i)$.

$$Pr(X_i \le x) = Pr(u_i \le F_X(x))$$

= $F_X(x)$

- \implies X_1, \ldots, X_n are independent draws from the distribution with cdf F_X .
- One drawback: What if we don't know F_X ?

RNG Importance

mpling Concl o

Pseudo-random number generators

- How do we obtain u_1, \ldots, u_n though?
 - A pseudo-random number generator is a deterministic sequence that mimics properties of a sequence of random variables.
 - Requires a seed to start
 - This is useful for replicating results because starting with the same seed produces the same sequence of draws.
 - *Period*: After a certain (large) number of draws, the sequence repeats itself.

RNG Importance

ce sampling Co o

Quasi-random number generators

- Pseudo-random numbers tend to not fill sample space uniformly.
 - Just like random numbers!
- This can lead to slow $(O(S^{-1/2}))$ convergence of Monte Carlo integration.
- Quasi-random numbers are designed to provide better coverage (low discrepancy).

MSL example

MSM example

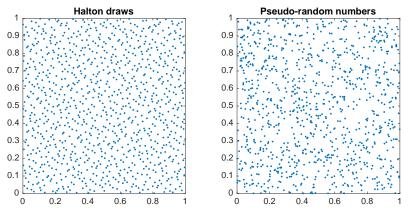
RNG Importance

ortance sampling

o

Quasi-random number generators

independent Uniform(0, 1)



MSL example

MSM example

RNG Importance

ance sampling C o

Quasi-random number generators

Halton draws Pseudo-random numbers 3 3 2 2 1 0 0 -1 -1 -2 -2 -3 -3 -4 -4 -2 2 -2 2 0 0 -4 -4

independent N(0, 1)

MSL example

ISM example

RNG Import

oortance sampling

Conclusior o

Quasi-random number generators

• Faster convergence but

- this advantage is lost in high dimensions
- at the cost (?) of not being independent draws
- See Train (2000) for results on using Halton sequences in MSL estimation of the mixed logit model.

MSL example

M example RN

(NG 0000000

Importance sampling

Conclusio o

The basic idea

Notice that

$$\int h(x)f(x)dx = \int \frac{h(x)f(x)}{g(x)}g(x)dx$$

• So we can either sample from *f* and compute $S^{-1} \sum_{s=1}^{S} f(x_s)$

MSL example

M example RN

1NG 0000000

Importance sampling

Conclusion

The basic idea

Notice that

$$\int h(x)f(x)dx = \int \frac{h(x)f(x)}{g(x)}g(x)dx$$

- So we can either sample from f and compute $S^{-1} \sum_{s=1}^{S} f(x_s)$
- or sample from g and compute $S^{-1} \sum_{s=1}^{S} \frac{h(x_s)f(x_s)}{g(x_s)}$

MSL example

Viexample RN

RNG

Importance sampling

Conclusior o

The basic idea

- Two reasons to do this:

 - If the function *h* is not smooth on the support of *f* but it is smooth on the support of *g*.

MSL example

SM example

RNG

Importance sampling

Conclusion

Example

Multinomial probit model.

We need to simulate integrals like

$$\int \mathbf{1}(z_1 > c_1, z_2 > c_2)\phi(z_1, z_2; 0, \Sigma)dz$$

• This can be done by sampling Z_1^* from a truncated normal, $TN(0, 1; c_1/\sigma_{11}, \infty)$, and then sampling Z_2^* from $TN(0, 1; (c_2 - \sigma_{12}Z_1^*)/\sigma_{22}, \infty)$ and then computing

$$S^{-1}\sum_{s=1}^{S} (1 - \Phi(c_1/\sigma_{11})) (1 - \Phi((c_2 - \sigma_{12}Z_{1s}^*)/\sigma_{22}))$$

Note that here h is 1(z₁ > c₁, z₂ > c₂), f is the normal density and g is the truncated normal density.

MSL example

M example F

ING Ir 1000000 0 ce sampling

Conclusion

Parting remarks

- The next time you take a look at a paper using these methods:
 - What is the advantage of the structural method over a "reduced form" method?
 - Do they discuss identification?
 - Do they discuss the simulator they use?
 - How do they compute standard errors?