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traditional MLE and GMM

• MLE:

L(θ) = log f θy1,...,yn|x1,...,xn
=

n∑
i=1

log(f θyi |xi
)

• Computation of the MLE involves evaluation the likelihood
(and possibly it’s derivatives) iteratively for many values of
θ.

• This is difficult when f θyi |xi
is difficult to compute.
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traditional MLE and GMM

• GMM based on moments E(wim(yi , xi , θ)) = 0:
• The GMM estimator minimizes(

n∑
i=1

wim(yi , xi , θ)

)′
W

(
n∑

i=1

wim(yi , xi , θ)

)

• Computation involves evaluating this objective function (and
possibly it’s derivatives) iteratively for many values of θ.

• This is difficult when m(yi , xi , θ) is difficult to compute.
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MLE vs GMM

• Two reasons fyi |xi
or m(yi , xi , θ) can be difficult to compute:

• latent variable: f θyi |xi
=
∫

f θyi |xi ,u
fudu

• yi is determined conditional on xi and unobserved shock(s)
via an economic model which may involve dynamic
optimization, solution of a nash equilibrium, etc.
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Some examples

• Multinomial probit:

`(β) =
n∑

i=1

J∑
j=1

1(yi = j) log(Pr(yi = j | Xi))

where

Pr(yi = j | Xi) = Pr(X ′ijβ + εij ≥ max
l 6=j

X ′ilβ + εil)

and εi = (εi1, . . . , εiJ) ∼ N(0,Σ)
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Some examples

• Random coefficients logit: same form for likelihood with

Pr(yi = j | Xi) =

∫ exp(X ′ijβi)∑J
l=1 exp(X ′ilβ)

f (βi)dβi

and βi ∼ N(β̄,Σβ)

• Both of these can allow for a choice-invariant regressor
with a choice-specific coefficient as well (γ′j wi ).
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Some examples

• Dynamic discrete choice models.
• Given state variables {xit , εit} agent i chooses control

variables {yit} to maximize
E
(∑∞

t=0 β
t (u(xit , yit , θ) + εit ) | xi0, εi0

)

• There is a Bellman equation solution and if yit is binary,
Rust (1987) provides conditions under which

Pr(yit = 1 | xit , θ) =
exp(u(xit , 1, θ) + βEV (xit , 1, θ))

exp(u(xit , 0, θ) + βEV (xit , 0, θ)) + exp(u(xit , 1, θ) + βEV (xit , 1, θ))

where

EV (x, y, θ) =

∫
log

 ∑
y′=0,1

exp(u(x′
, y′

, θ) + βEV (x′
, y′

, θ)

 p(dx′ | x, y, θ)

• We need to solve for the expected value function, EV , to
evaluate the likelihood.
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Some examples

• Dynamic discrete choice models.
• Solving for the expected value function involves an

approximation.
• The method of simulated moments is an alternative.
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Maximum Simulated Likelihood

• Suppose that f (yi | Xi , θ) =
∫

g(yi | Xi ,u, θ)ψ(u)du.
• simulate ui1, . . . ,uiS ∼i.i.d . ψ(·) for each i and replace
`i(θ) = log(f (yi | Xi , θ)) with

ˆ̀i(θ) = log

(
S−1

S∑
s=1

g(yi | Xi ,uis, θ)

)

• then θ̂MSL = arg maxθ
∑n

i=1
ˆ̀i(θ).
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Maximum Simulated Likelihood

• Only consistent and asymptotically normal if
√

n/S → 0.
Take S as a multiple of the sample size if feasible.
• do not draw new simulation sample in each iteration of the

optimization routine!
• Sometimes this naive simulation can be improved by

importance sampling and other variance-reduction
techniques. See 12.7 in CT.
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Method of Simulated Moments

• Suppose we want to estimate θ based on the moment
condition: E(wim(yi , xi , θ0)) = 0
• where computing m(yi , xi , θ) =

∫
h(yi , xi ,u, θ)ψ(u)du

requires simulation
• The MSM estimator is computed by following these steps:

• draw uis, s = 1, . . . ,S independently from ψ for each i
• and compute m̂(yi , xi , θ) = S−1∑S

s=1 h(yi , xi ,uis, θ)
• minimize(

n∑
i=1

wim̂(yi , xi , θ)

)′
W

(
n∑

i=1

wim̂(yi , xi , θ)

)
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Method of Simulated Moments

• Because E(m̂(yi , xi , θ) | yi , xi) = m(yi , xi , θ) (unbiased
simulation), if the usual GMM conditions are satisfied then
the MSM estimator is a consistent, asymptotically normal
estimator

• if, in addition, S →∞, then the estimator is asymptotically
equivalent to the GMM estimator
• for finite S, the asymptotic variance is inflated by a factor of

1 + S−1, though this can be improved, e.g. by importance
sampling



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Method of Simulated Moments

• Because E(m̂(yi , xi , θ) | yi , xi) = m(yi , xi , θ) (unbiased
simulation), if the usual GMM conditions are satisfied then
the MSM estimator is a consistent, asymptotically normal
estimator
• if, in addition, S →∞, then the estimator is asymptotically

equivalent to the GMM estimator
• for finite S, the asymptotic variance is inflated by a factor of

1 + S−1, though this can be improved, e.g. by importance
sampling



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Method of Simulated Moments

• Variance estimation requires either simulation or bootstrap
• Gourieroux and Monfort (1991) provide more general

conditions under which S →∞ is not necessary
• Pakes and Pollard (1989) provide some examples.
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Indirect inference

• Ingredients:
• economic model, e.g., yi = G(Xi ,ui ;β) for i = 1, . . . ,n and

ui ∼iid Fu
• auxiliary model, e.g., a likelihood:
`n(θ) =

∑n
i=1 log(f (yi | Xi , θ))

• an auxiliary estimate, e.g., θ̂ = arg maxθ `n(θ)
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Indirect inference

• For any value of β,
• simulate {ym

i (β)} from the economic model for m=1,. . . ,M
• obtain θ̃(β) by maximizing

M∑
m=1

n∑
i=1

log(f (ym
i (β) | Xi , θ)

• Alternatively, get M different estimates, θ̃1(β), . . . , θ̃M(β)
and use θ̃(β) = M−1∑M

m=1 θ̃m(β)
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Indirect inference

• The indirect inference estimator of β is given by

β̂ = arg min
β

D(θ̂, θ̃(β))

• D is a metric function; Smith (2008) suggests Wald, LR, LM
metrics

• consistent and asymptotically normal for M fixed, n→∞
• variance inflate by 1 + M−1

• very easy to implement despite the lack of efficiency
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Indirect inference

• The following are typical conditions required for indirect
inference:
• the economic model is correctly specified and well-behaved
• the auxiliary likelihood function is well-behaved in the limit,

despite the fact that it is misspecified
• binding function

• `n(θ)→p `(θ;β,Fu) when the data is generated by the
economic model with parameters β and distribution Fu

• define θ(β) = argmaxθ `(θ;β,Fu)
• θ0 = θ(β0) is the pseudo-true value
• θ(β) is the binding function
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Indirect inference

• under appropriate regularity conditions, θ̂ →p θ0 and
θ̃(β)→p θ(β)

• thus the identification condition: is β0 the unique solution to
θ0 = θ(β)?
• requires dim(θ) ≥ dim(β)

• simulation avoids needing to know the binding function



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Indirect inference

• under appropriate regularity conditions, θ̂ →p θ0 and
θ̃(β)→p θ(β)

• thus the identification condition: is β0 the unique solution to
θ0 = θ(β)?
• requires dim(θ) ≥ dim(β)

• simulation avoids needing to know the binding function



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Simulation-based estimation methods

MSL example

MSM example

How do we generate random numbers anyway?

Importance sampling

Conclusion



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Random coefficient logit model

• Consider the binary outcome model

Yi = 1(β0 + β1iXi + εi ≥ 0)

where
• εi is iid logistic
• β1i = β1 + σβ1ui where ui is iid N(0,1)

• Then

Pr(Yi = 1 | Xi) =

∫
exp(β0 + β1Xi + σβ1Xiu)

1 + exp(β0 + β1Xi + σβ1Xiu)
φ(u)du
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MLE for the RL model

• Let θ = (β0, β1, σβ1).
• The log likelihood is

L(θ) =
n∑

i=1

log

(∫
π(Yi | Xi ,u, θ)φ(u)du

)
where

π(y | x ,u, θ) =


exp(β0+β1x+σβ1 xu)

1+exp(β0+β1x+σβ1 xu) if y = 1
1

1+exp(β0+β1x+σβ1 xu) if y = 0
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MSL for the RL model

• First, simulate ui1, . . . ,uiS ∼i.i.d . ψ(·) for each i
• Let

ˆ̀i(θ) = log

(
S−1

S∑
s=1

π(Yi | Xi ,uis, θ)

)

• Then θ̂MSL = arg maxθ
∑n

i=1
ˆ̀i(θ).



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

MSL for the RL model

• MSL replaces choice probabilities,

π(yi | Xi , θ) =

∫
π(Yi | Xi ,u, θ)φ(u)du,

• with simulated choice probabilities:

π̂(yi | Xi , θ) = S−1
S∑

s=1

π(Yi | Xi ,uis, θ)
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MSL for the RL model

• The estimated asymptotic variance can be derived using
equation (12.21) in CT:

V̂ =

(
n∑

i=1

(
ĥi(θ̂)ĥi(θ̂)′

))−1

ĥi(θ̂) =
(−1)1−Yi

∑S
s=1 Wisπ(1 | Xi ,uis, θ̂)π(0 | Xi ,uis, θ̂)∑S

s=1 π(Yi | Xi ,uis, θ̂)

where Wi = (1,Xi ,Xiuis)′
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demonstration of MSL for the RL model

• A simple Matlab code snippet:
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demonstration of MSL for the RL model

• Then the estimator is computed, e.g., by
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demonstration of MSL for the RL model

The following graph shows bias as a function of S.
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A nonseparable model

• Suppose Yi = g(Xi ,Vi | β).
• for example, g(x , v | β) = x ′β + v

• Further suppose that Vi is independent of Xi and
Vi ∼ N(0, σ2

V ).



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

GMM for the nonseparable model

• Let θ = (β, σV ) and

m(yi , xi , θ) =

 yi − E(yi | xi , θ)
xi(yi − E(yi | xi , θ))
y2

i − E(y2
i | xi , θ)


• Then the moment conditions E(m(yi , xi , θ)) = 0 can be

used to estimate θ.
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GMM for the nonseparable model

• If g(x , v | β) = x ′β + v then E(yi | xi , θ) = x ′i β and
E(y2

i | xi , θ) = (x ′i β)2 + σ2
V and the GMM estimator is

equivalent to OLS.
• More generally,

E(yi | xi , θ) =

∫
g(x , σV u | β)φ(u)du

E(y2
i | xi , θ) =

∫
g(x , σV u | β)2φ(u)du

and these may not have a closed form solution.
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MSM for the nonseparable model
• First, simulate ui1, . . . ,uiS ∼i.i.d . ψ(·) for each i
• Let

ĝ1(xi , θ) = S−1
S∑

s=1

g(xi , σV uis | β)

ĝ2(xi , θ) = S−1
S∑

s=1

g(xi , σV uis | β)2,

m̂1(yi , xi , θ) = yi − ĝ1(xi , θ), m̂2(yi , xi , θ) = xi(yi − ĝ1(xi , θ)),
and m̂3(yi , xi , θ) = yi − ĝ2(xi , θ).
• Then define

QN(θ) =

(
n−1

n∑
i=1

m̂(yi , xi , θ)

)′(
n−1

n∑
i=1

m̂(yi , xi , θ)

)
where m̂ = (m̂1, m̂2, m̂3)′.
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MSM for the nonseparable model

• CT call m̂(yi , xi , θ) the frequency simulator. This estimator:
• is unbiased, e.g.,

E (m̂1(yi , xi , θ)) = E(yi )− E

(
S−1

S∑
s=1

E (g(xi , σV uis | β) | xi , θ)

)

= E(yi )− E
(∫

g(xi , σV u | β)φ(u)du
)

= E(yi − E(yi | xi , θ))

• has variance Var(m̂) =
(
1 + 1

S

)
Var(m)
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MSM for the nonseparable model

• The estimated asymptotic variance will just be 1 + S−1

times the estimated asymptotic variance of the
conventional GMM estimator.
• This entails estimating ∂

∂θm(yi , xi , θ), which requires
another simulation.

• The bootstrap is commonly used instead.
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demonstration of MSM for the ns model

• A simple Matlab code snippet:



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Indirect inference for the ns model

• an alternative to MSM is to define the objective function
Qn(γ) by following these steps
1. simulate the data M times from the nonseparable model

with parameter γ = (β, σV ):

ym
i = g(xi , σV uim | β)

2. for each simulated dataset, compute the OLS parameter
estimates, θ̃m(γ)

3. average these estimates across the M simulations,
θ̃(γ) = M−1∑M

m=1 θ̃
m(γ)

4. measure the distance between these average estimates
and the estimate from the real data, call this
Qn(γ) = d(θ̂, θ̃(γ))

• Then let γ̂ = arg minγ Qn(γ)
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demonstration of Indirect Inference for the ns model
• A simple Matlab code snippet:
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Further notes on indirect inference

• The asymptotic variance can be derived using standard
results for m-estimators. See formula in Gourieroux,
Monfort, Renault (1993).
• Requires asymptotic covariance matrix for θ̂.
• Also requires an estimate of ∂

∂γ θ(γ).
• Gourieroux, Monfort, Renault (1993) also discuss an

optimal weighting matrix when
d(θ̂, θ̃(γ)) = (θ̂ − θ̃(γ))′W (θ̂ − θ̃(γ))

• Use of bootstrap is very common.
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Further notes on indirect inference

• Smith (2008) says to instead define θ̃(γ) as the maximizer
of the average of the m likelihoods.
• Gourieroux, Monfort, Renault (1993) show that this is

asymptotically equivalent in this model (and in fact most
models).

• Many people refer to this as a method of simulated
moments or simulated method of moments.
• Generally, θ̂, the auxiliary model, does not have to be a

huge system of equations but instead can be different
combinations of separate estimators.
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Inverse probability integral transform

• Suppose u1, . . . ,un are independent draws from a
Uniform(0,1) distribution.
• Let FX denote the cdf of a particular distribution.
• Then let Xi = F−1

X (ui).

Pr(Xi ≤ x) = Pr(ui ≤ FX (x))

= FX (x)

• =⇒ X1, . . . ,Xn are independent draws from the distribution
with cdf FX .

• One drawback: What if we don’t know FX ?



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Inverse probability integral transform

• Suppose u1, . . . ,un are independent draws from a
Uniform(0,1) distribution.
• Let FX denote the cdf of a particular distribution.
• Then let Xi = F−1

X (ui).

Pr(Xi ≤ x) = Pr(ui ≤ FX (x))

= FX (x)

• =⇒ X1, . . . ,Xn are independent draws from the distribution
with cdf FX .

• One drawback: What if we don’t know FX ?



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Inverse probability integral transform

• Suppose u1, . . . ,un are independent draws from a
Uniform(0,1) distribution.
• Let FX denote the cdf of a particular distribution.
• Then let Xi = F−1

X (ui).

Pr(Xi ≤ x) = Pr(ui ≤ FX (x))

= FX (x)

• =⇒ X1, . . . ,Xn are independent draws from the distribution
with cdf FX .
• One drawback: What if we don’t know FX ?



Simulation-based estimation methods MSL example MSM example RNG Importance sampling Conclusion

Pseudo-random number generators

• How do we obtain u1, . . . ,un though?
• A pseudo-random number generator is a deterministic

sequence that mimics properties of a sequence of random
variables.

• Requires a seed to start
• This is useful for replicating results because starting with the

same seed produces the same sequence of draws.
• Period : After a certain (large) number of draws, the

sequence repeats itself.
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Quasi-random number generators

• Pseudo-random numbers tend to not fill sample space
uniformly.
• Just like random numbers!

• This can lead to slow (O(S−1/2)) convergence of Monte
Carlo integration.
• Quasi-random numbers are designed to provide better

coverage (low discrepancy).
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Quasi-random number generators

independent Uniform(0,1)
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Quasi-random number generators

independent N(0,1)
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Quasi-random number generators

• Faster convergence but
• this advantage is lost in high dimensions
• at the cost (?) of not being independent draws
• See Train (2000) for results on using Halton sequences in

MSL estimation of the mixed logit model.
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The basic idea

• Notice that ∫
h(x)f (x)dx =

∫
h(x)f (x)

g(x)
g(x)dx

• So we can either sample from f and compute
S−1∑S

s=1 f (xs)

• or sample from g and compute S−1∑S
s=1

h(xs)f (xs)
g(xs)
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The basic idea

• Two reasons to do this:
• The two simulators have the same mean but the variance of

the latter is lower if
∫

h(x)2f (x)dx >
∫ h(x)2f (x)

g(x) f (x)dx .
• If the function h is not smooth on the support of f but it is

smooth on the support of g.
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Example

Multinomial probit model.
• We need to simulate integrals like∫

1(z1 > c1, z2 > c2)φ(z1, z2; 0,Σ)dz

• This can be done by sampling Z ∗1 from a truncated normal,
TN(0,1; c1/σ11,∞), and then sampling Z ∗2 from
TN(0,1; (c2 − σ12Z ∗1 )/σ22,∞) and then computing

S−1
S∑

s=1

(1− Φ(c1/σ11)) (1− Φ((c2 − σ12Z ∗1s)/σ22))

• Note that here h is 1(z1 > c1, z2 > c2), f is the normal
density and g is the truncated normal density.
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Parting remarks

• The next time you take a look at a paper using these
methods:
• What is the advantage of the structural method over a

“reduced form” method?
• Do they discuss identification?
• Do they discuss the simulator they use?
• How do they compute standard errors?
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