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Binary choice

If Yi is binary then E(Yi | Xi = x) = Pr(Yi = 1 | X = x)
• the CEF is likely not linear
• but OLS provides the best linear approximation to the CEF,

Pr(Yi = 1 | Xi )
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Binary choice

• Suppose Di is a randomly assigned binary treatment
variable.
• let βOLS denote the OLS estimand from a regression of Yi

on Di
• then

βOLS = E(Yi | Di = 1)− E(Yi | Di = 0) = ATE
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Binary choice

• Suppose that (Y1i ,Y0i) ⊥⊥ Di | Xi
• if the model is fully saturated in Xi ,

βOLS =
∑

x

δxwx

where
• wx are weights proportional to P(x)(1− P(x))Pr(Xi = x)
• δx = E(Y1 − Y0 | Xi = x)



Binary choice Structural estimation methods Multinomial models Application 1 Application 2 More examples

AP’s reasons to avoid probit/logit

• “regression gives us what we need with or without the
probit distributional assumptions”
• “if the CEF has a causal interpretation, it seems fair to say

that regression has a causal interpretation as well,
because it still provides the MMSE approximation to the
CEF”
• “...while a nonlinear model may fit the CEF ... more closely

than a linear model, when it comes to marginal effects, this
probably matters little.”
• too many decisions to make along the way, while OLS is

standardized
• life gets more complicated with IV and panel data
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Latent index model

• Let Y ∗i = β′Xi + εi denote a latent index and suppose that
we observe Yi = 1(Y ∗i ≥ 0).

• back to generic notation where Xi can include a “treatment”
and “controls”

• If εi and Xi are independent then

Pr(Yi = 1 | Xi) = Fεi (β
′Xi)

• if Fεi is the standard normal cdf this is the probit model
• if Fεi (x) = exp(x)

1+exp(x) this is the logit model
• if Fεi (x) = x1(0 ≤ x ≤ 1) this is the linear probability model
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Latent index model

• The latent index may have a structural interpretation
(random utility, shadow price, etc.).
• In the structural interpretation it often does not make sense

to restrict the standard deviation of εi .
• Assume that εi | Xi ∼ N(0, σ2

ε)
• Then

Yi = 1(β′Xi + εi ≥ 0)

= 1(
β

σε

′
Xi +

εi

σε
≥ 0)

• Thus Pr(Yi = 1 | Xi ) = Φ
(
β′

σε
Xi

)

• so we can’t separate β from σε
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Marginal effects

• marginal effect of a continuous regressor:
∂
∂xk

Pr(Yi = 1 | Xi = x) = βk fεi (β
′x)

• the partial effect of a discrete regressor
• Suppose Xi = (Di , X̃i ).
• We estimate the partial effect of Di as a difference:

Fεi (β0 + β1 + β′2x̃)− Fεi (β0 + β′2x̃)

• marginal effects at the mean: βk fεi (β
′X̄ )

• average marginal effect: βkE (fεi (β
′Xi))

• margins command in Stata
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Estimation

• estimation is via maximum likelihood:

β̂ = maxβ
∑
i=1

Yi ln
(
Fε(β′Xi)

)
+ (1− Yi)ln

(
1− Fε(β′Xi)

)
• in small samples or high dimensional models you might

experience convergence problems:

• the MLE does not exist if there is a β such that β′Xi ≥ 0 for
all i : Yi = 0 and β′Xi ≤ 0 for all i : Yi = 1

• it is not clear whether Stata is able to catch all cases of this
• if the “overlap” is small and there are many regressors then

Stata’s algorithm my have difficulty converging
• problems with approximating probit cdf when probabilites

are close to 0/1 (outliers)
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probit/logit versus OLS

• causal effects in the latent index model:
• independence between εi and (Di ,Xi ) implies CIA
• then

δx = E(Y1i − Y0i | Xi = x)

= Fεi (β0 + β1 + β′2x)− Fεi (β0 + β′2x)

• nonlinearity induces heterogeneous effects
• if the model is not fully saturated in Xi , the nonlinearity can

make problems even worse

• misspecification is a valid concern
• suppose εi is heteroskedastic
• one solution to this problem is a semiparametric model

(average derivative methods or maximum score methods)
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Illustration of OLS bias

• I simulated the following model:

Xi ∼ N(0,1)

Di = 1(γ0 + Xi ≥ vi), vi ∼ N(0,1)

Yi = 1(0.5Di + Xi ≥ ui), ui ∼ N(0,1)

• The ATE is E (Φ(.5 + Xi)− Φ(Xi)) ≈ 0.14
• I simulate the model for a grid of values of γ0 between −3

and 3 for n = 1000 observations.
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Illustration of OLS bias
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Structural models

• Over the next few lectures I want to introduce you to
structural estimation methods.
• Today I begin by familiarizing you with some nonlinear

models which are commonly used.
• We will also take about maximum likelihood because this

gives us practice in moving from an economic model to an
econometric specification.
• Next class we will discuss other estimation methods.
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Maximum likelihood

• You’ve seen theoretical conditions for maximum likelihood
estimation before. See Cameron and Trivedi for a review.
• Suppose we observe a vector of outcomes Yi and

covariates Xi .
• Our model fully specifies, up to a parameter vector β, the

distribution of Yi conditional on Xi via a density
fY |X (Yi | Xi ;β).
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Maximum likelihood

• With iid data, the likelihood function is

L(β) =
n∏

i=1

fY |X (Yi | Xi ;β)

• Let L(β) = log(L(β)) =
∑n

i=1 log(fY |X (Yi | Xi ;β)). Then

β̂MLE = arg max
β
L(β)
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Properties of MLE

• β̂MLE →p β and
√

n(β̂MLE − β)→d N(0, I−1) where

• I = plimn→∞
1
N
∂L(β)
∂β

∂L(β)
∂β′ (Fisher information matrix)

• E
(
∂L(β)
∂β

∂L(β)
∂β′

)
= −E

(
∂2L(β)
∂β∂β′

)
(information matrix

equality)
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Properties of QMLE

• Suppose fY |X (Yi | Xi ;β) is not the correct density.
• β̂MLE →p β

∗, pseudo-true value that maximizes
plimn→∞

1
nL(β)

• √n(β̂MLE − β∗)→d N(0,A−1BA−1) where
• B = plimn→∞

1
N
∂L(β)
∂β

∂L(β)
∂β′ and A = plimn→∞

1
N
∂2L(β)
∂β∂β′
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Properties of (Q)MLE

• Under correct specification, A−1BA−1 = B−1 = I−1.
• Example:

• OLS is equivalent to MLE assuming homoskedastic normal
errors

• If errors are heteroskedastic, we can use a sandwich
formula that accounts for heteroskedasticity
(Eicker-Huber-White standard errors)

• In this case, the pseudo-true value is β.
• The “robust” option for a probit does the same thing, but the

pseudo-true value is not β
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Nonlinear least squares

• The nonlinear least squares (NLS) estimator is an
alternative to MLE.
• less efficient than MLE
• but relies on weaker distributional assumptions

• Suppose Yi = g(Xi , β) + ui and E(ui | Xi) = 0.
• Then β̂NLS minimizes

n∑
i=1

(Yi − g(Xi , β))2
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Nonlinear least squares

• Sandwich variance matrix:
• β̂NLS →p β and

√
n(β̂NLS − β)→d N(0,A−1BA−1)

• where A = plimn→∞
1
n

∑n
i=1

∂g(Xi ,β)
∂β

∂g(Xi ,β)
∂β′ and

B = plimn→∞
1
n

∑n
i=1
∑n

j=1 E(uiuj | X )∂g(Xi ,β)
∂β

∂g(Xi ,β)
∂β′
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Other estimators

• Variations on NLS (e.g., FGNLS)
• GMM (more on this in a few classes)
• simulation-based versions of these



Binary choice Structural estimation methods Multinomial models Application 1 Application 2 More examples

Random utility model for multinomial outcomes

We can start with a very general random utility model.
• Individual (or household, firm, etc.) i has a choice among m

alternatives.
• For j = 1, . . . ,m, utility for choice j is Uij = Vij + εij where Vij

will be a function of observables and εij is unobservable.
• Then the probability that i chooses j (conditional on

observables) is:

pij : = Pr
(

Uij = max
k=1,...,m

Uik

)
= Pr (εik − εij ≤ Vij − Vik for all k 6= j)
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Random utility model for multinomial outcomes

• The log likelihood is then
∑n

i=1
∑m

j=1 log(pij)yij where yij is
equal to 1 if observation i chose option j and 0 otherwise.
• There are then two choices to make:

• how to specify Vi1, . . . ,Vim
• how to specify the joint distribution of εi1, . . . , εim
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Multinomial logit model

• Logit models are derived from the assumption that
εi1, . . . , εim are independent with identical type 1 extreme
value distributions
• sometimes called the Gumbel distribution, sometimes

abbreviated EV1, this distribution has cdf F (x) = e−e−x

• Under this assumption,

pij =
exp(Vij)∑m

k=1 exp(Vij)

=
exp(Vij − Vi1)

1 +
∑m

k=2 exp(Vij − Vi1)
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Multinomial logit model

Independence of irrelevant alternatives (IIA)
• Notice that for two choices j 6= k ,

pij

pik
=

exp(Vij )

exp(Vik )

• The relative probability of the two options is not affected by
other options at all!

• “red bus-blue bus” problem



Binary choice Structural estimation methods Multinomial models Application 1 Application 2 More examples

Multinomial logit model

Specifying Vij
• What makes utility of one choice higher than utility of

another?
• choice-specific characteristics, including price
• preferences, which vary with individual characteristics

• A general model that includes both: Vij = β′xij + γ′j wi

• xij are choice-specific characteristics, which may also vary
with the individual

• wi is an individual characteristic and γj reflects how this
characteristic influence utility of choice j

• note that we must normalize γ1 = 0



Binary choice Structural estimation methods Multinomial models Application 1 Application 2 More examples

Multinomial logit model

Specifying Vij
• note that Vij − Vi1 = β′(xij − xi1) + (γj − γ1)′wi
• we can always add the same constant to γj and γ1 and the

likelihood does not change
• so we must normalize γ1 = 0
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Multinomial logit model

Marginal effects
• For the choice-specific variables:

∂pij

∂xij
= pij (1− pij )β

∂pij

∂xik
= −pijpikβ, k 6= j

• For regressors that don’t vary with choice:

∂pij

∂wi
= pij

(
γj −

m∑
k=1

γk pik

)
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Multinomial logit model

Log odds ratio interpretation
• If Vij = γ′j wi then

log

(
pij

pik

)
= (γj − γk )′wi

• Since γ1 = 0, coefficient estimates γ̂j can then be
interpreted as the increase in the log odds ratio of choice j
relative to choice 1 due to a one unit increase in wi .

Alternatively, we can simulate the model to answer
different policy counterfactuals.
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Multinomial logit model

In Stata
• mlogit

• data structure – each row is an individual and the depvar is
a categorical variable

• syntax – mlogit depvar indepvars,
baseoutcome(value) where value is the value for the
dependent variable indicating the choice where we impose
the normalization

• model – only works for Vij = γ′j wi

• asclogit
• data structure – each row is an individual, choice pair and

the depvar is a dummy variable
• syntax – asclogit depvar indepvars, case(id)
alternatives(choice) basealternative(value)
where value is the value for the dependent variable
indicating the choice where we impose the normalization.

• model – works for Vij = β′xij + γ′j wi
• wi are specified using casevars option
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Multinomial logit model

More on IIA
• Suppose Vij = α · pricej + β′xij + γ′j wi .
• Then the cross price elasticity ( ∂pij

∂pricek

pricek
pij

) is equal to

αpricek pik .

• It is the same for all j !!
• One solution is to model the correlations between εij and εik

explicitly (see multinomial probit next class).
• Two more solutions will be previewed.
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Nested logit model

• In some cases we can group choices together – red bus
and blue bus are both buses.
• The nested logit models the probability of choosing option

k which is part of group j by

pjk = pj × pk |j

• For the nested logit with Vjk = α′zj + β′xjk for J groups
where group j has Kj choices:

pjk =
exp(α′zj + ρj Ij)∑J

m=1 exp(α′zj + ρj Ij)

exp
(
(βj/ρj)

′xjk
)∑Kj

l=1 exp
(
(βj/ρj)′xjl

)
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Random coefficients logit model

• We can generalize the utility model to include an
individual-specific coefficient that is treated as a “random
effect” Vij = β′i xij .
• In this model,

pij =

∫
pij(βi)fβi (βi)dβi

where pij(β) =
exp(β′xij )∑m

k=1 exp(β
′xik )

• Typically fβi is specified as a normal distribution with a
mean and variance to be estimated.
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Kleven et al. (2013)

• A model for country choice (of European football players).
• The multinomial choice model: for player i in time t playing

in country n yields utility:

U i
nt = αlog(1− τ i

nt ) + αlog(w i
nt ) + homei

n + x i
tβn + γn + ν i

nt

• multinomial logit
• can you map the notation here to the general notation for

the multinomial logit above in the slides?
• various specifications to account for not observing w i

nt
• probability that i chooses n in year t is

P i
nt = Pr(U i

nt ≥ U i
mt ∀m)
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Kleven et al. (2013)

• Tax elasticities:
• they compare estimates of

εn
domestic =

d log(
∑

i∈In P i
nt )

d log(1− τnd )
= α(1− P̄d

n )

and

εn
foreign =

d log(
∑

i∈IC
n

P i
nt )

d log(1− τnf )
= α(1− P̄ f

n)

• these formulas show how restrictive the multinomial logit
can be
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Christensen and Kiefer

A job search model
• Suppose job offers are distributed according to a density

f (w).
• There is a reservation wage wr such that each worker i

accepts offer wi if wi ≥ wr .
• The distribution of accepted offers is

g(w) =
f (w)∫∞

wr
f (w)dw

1(w ≥ wr )
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Christensen and Kiefer

Taking the model to data
• Suppose f (w) and wr are parameterized by a vector θ.
• We observe a sample of wages for workers (who are

assumed to have accepted a wage offer).
• So we observe (w1, . . . ,wn), an iid sample from g(w).
• Thus, the likelihood is

L(θ) =
n∏

i=1

f (wi ; θ)∫∞
wr (θ)

f (w ; θ)dw
1(wi ≥ wr (θ))
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Christensen and Kiefer

Taking the model to data
• One option is to take f (w) = γ exp(−γ(w − c)).
• It turns out that g does not end up depending on c so we

can take θ = (γ,wr ) and

L(θ) = γn exp

(
−γ

n∑
i=1

(wi − wr )

)
1(min(wi ) ≥ wr )

• This likelihood function has some weird properties
(regardless of how f (w) is parameterized; assumption (iv)
in Prop 5.5 in CT; see the paper for details) so the authors
assume wages are observed with error.
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Christensen and Kiefer

Model with measurement error
• It is assumed that we observe we

i = wimi where wi is iid
from g(w).

• They maintain the shifted exponential assumption,
f (w) = γ exp(−γ(w − c)).

• The measurement error, mi is assumed to have density
h(mi ) with support on [0,∞).

• Note then that for any x ,

Pr(we
i ≤ x) =

∫ ∞
0

Pr(wi ≤
x
mi
| mi )h(mi )dmi
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Christensen and Kiefer

Model with measurement error
• This can be written as

Pr(we
i ≤ x) =

∫ x/wr

0
(1− exp(−γ(x/mi − wr ))) h(mi )dmi

• To derive the likelihood function we need the density of we
i ,

which will be denoted fe(x).

fe(x) =
d
dx

Pr(we
i ≤ x)

= γ exp(γwr )

∫ x/wr

0

1
m

h(m) exp(−γx/m)dm

• This is derived assuming certain properties of h.
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Christensen and Kiefer

Specifying the distribution of measurement error
• First, the density h must satisfy some properties for fe to

take the form on the previous slide.
• Second, we want to use a flexible family of distributions as

we do not know much about what the distribution should
look like.

• Further, we want the resulting expression for fe to be
tractable.



Binary choice Structural estimation methods Multinomial models Application 1 Application 2 More examples

Christensen and Kiefer
The resulting fe:
 Measurement Error 629

 Density

 0.4 - b= o

 b =64.5

 0.3-

 0.2-

 0.1

 / , / - I I I Wage
 2 4 6 8

 FIG. 1.-Observed wage densities

 From (5.2), the log-likelihood function for the unknown parameter 0 = (b,
 7, Wr) &E ]?, based on a random sample w = (w1, ..., WN) of observed
 wages, is

 e(0) = N{eny + 7wr + (b + i)enb + en(b + 1)}

 N

 + X, eS(w,(7 + b/wi); b + 2) (5.5)
 i=l

 N

 -(b + 2) 1 en(b + 7w).
 i=I

 In view of the noted regularity of e, the MLE satisfies the likelihood equa-

 tion s(O) = 0. Define the ]'(a, 1) hazard rate:

 a-e -x
 h(x; ) = F(a)S(x; ) (5.6)

 The score s = (Sb, Sy, sW) is given by
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All use subject to http://about.jstor.org/terms
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Likelihood function

• Moving from a model, written in equations, to the
appropriate likelihood function?
• Can be difficult if your model isn’t a textbook case.
• Here I will provide some examples.
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Censoring

• Let Y ∗ denote the outcome of interest.
• (Right-) censoring occurs when we observe Y = Y ∗ if

Y ∗ ≤ C and we observe Y = C for the individuals with
Y ∗ > C.
• We will consider both the case where C varies across

individuals and the case where it is a constant.
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Truncation

• Let Y ∗ denote the outcome of interest.
• Truncation occurs when we observe Y = Y ∗ if Y ∗ ≤ C and

we don’t observe the individuals with Y ∗ > C at all (as in
the Christensen and Kiefer model).
• Again, C may or may not vary across individuals.
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Censoring

• Consider a sample of durations (y1, . . . , yn) and covariates
(x1, . . . , xn).
• Suppose the conditional density for Y ∗ is given by

f (y | x , θ).
• If yi = y∗i for all i then the likelihood is simply
L(θ) =

∑n
i=1 log(f (yi | xi , θ)).

• What if some observations are censored?
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Censoring

• Non-random censoring:
• The likelihood should be the distribution of what we

observe.
• Here we observe both Yi and Di = 1(Y ∗i ≤ C).

• If di = 1 then Pr(Yi = yi ,Di = di | Xi ) = Pr(Y ∗i = yi ,Y ∗i ≤
C | Xi ) = Pr(Y ∗i = yi | Xi ).

• If di = 0 then yi = C and
Pr(Yi = yi ,Di = di | Xi ) = Pr(Y ∗i > C | Xi ).

• So the log-likelihood is given by

n∑
i=1

Di ln(f (yi | xi , θ)) + (1− Di ) ln

(∫ ∞
C

f (y | xi , θ)dy
)
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Censoring
• Random censoring:

• Suppose censoring times are random, Ci , with distribution
fC|X (c | x , θ).

• Assume that Y ∗i and Ci are independent conditional on Xi .

• If di = 1 then

Pr(Yi = yi ,Di = di | Xi ) = Pr(Y ∗i = yi ,Y ∗i ≤ Ci | Xi )

= Pr(Y ∗i = yi ,Ci ≥ yi | Xi )

= f (yi | xi , θ)

∫ ∞
yi

fC(y | xi , θ)dy

• If di = 0 then yi = Ci and

Pr(Yi = yi ,Di = di | Xi ) = Pr(Ci = yi ,Y ∗i > Ci | Xi )

= fC(yi | xi , θ)

∫ ∞
yi

f (y | xi , θ)dy
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Truncation
• non-random censoring:

• The likelihood should be the distribution of what we
observe, conditional on being observed.

• This is usually implicit.

• Here,

Pr(Yi = yi | Di = 1, xi ) = Pr(Y ∗i = yi | Y ∗i ≤ C, xi )

=
Pr(Y ∗i = yi ,Y ∗i ≤ C | xi )

Pr(Y ∗i ≤ C | xi )

=
f (yi | xi , θ)∫ C

−∞ f (y | xi , θ)dy

• So the log-likelihood is

n∑
i=1

log(f (yi | xi , θ))− log

(∫ C

−∞
f (y | xi , θ)dy

)
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Truncation

• random censoring:
• Now we get

Pr(Yi = yi | Di = 1, xi ) = Pr(Y ∗i = yi | Y ∗i ≤ Ci , xi )

=
Pr(Yi = yi ,Y ∗i ≤ Ci | xi )

Pr(Y ∗i ≤ Ci | xi )

=
f (yi | xi , θ)(1− FC(yi | xi , θ))∫∞

−∞ f (y | xi , θ)(1− FC(y | xi , θ))dy
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Identification

• An important part of structural modeling: determining
model identification
• Just because we can write down a likelihood function does

not mean the model is identified.
• Consider the random censoring model:

• suppose we assume instead that Di = 1(Y ∗i ≤ Ci + c0)
• we can add a constant to c0 and shift the density of Ci by the

same constant without changing the likelihood function
• so the model is not identified!

• We will give some more examples of this next week.
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