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Lecture 5. Nonlinear regression models

Economics 8379
George Washington University

Instructor: Prof. Ben Williams
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Binary choice

If Y;is binary then E(Y; | Xj=x)=Pr(Yi=1| X =x)
¢ the CEF is likely not linear
® but OLS provides the best linear approximation to the CEF,
Pr(Y, =11X)
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Binary choice

e Suppose D; is a randomly assigned binary treatment
variable.
* let 3OS denote the OLS estimand from a regression of Y;
on D;
e then

5OLS:E(YI.|D,:1)7E(Y,-|D,-:O):ATE
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Binary choice

e Suppose that (Y3, Yoi) LL D; | X;
e if the model is fully saturated in X;,

BOLS — Z(sXWX
X

where
® wy are weights proportional to P(x)(1 — P(x))Pr(Xi = x)
® Sx=E(Y1—Yo| Xi=x)



Binary choice

0O00@0000000

AP’s reasons to avoid probit/logit

“regression gives us what we need with or without the
probit distributional assumptions”

“if the CEF has a causal interpretation, it seems fair to say
that regression has a causal interpretation as well,
because it still provides the MMSE approximation to the
CEF”

“...while a nonlinear model may fit the CEF ... more closely
than a linear model, when it comes to marginal effects, this
probably matters little.”

too many decisions to make along the way, while OLS is
standardized

life gets more complicated with IV and panel data
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Latent index model

* Let Y/ = §'X; + ¢; denote a latent index and suppose that
we observe Y; = 1(Y; > 0).
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Latent index model

* Let Y/ = §'X; + ¢; denote a latent index and suppose that
we observe Y; = 1(Y; > 0).
® back to generic notation where X; can include a “treatment”
and “controls”
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Latent index model

* Let Y/ = §'X; + ¢; denote a latent index and suppose that
we observe Y; = 1(Y; > 0).
® back to generic notation where X; can include a “treatment”
and “controls”

e If ¢; and X; are independent then

Pr(Y;=11X) = F,(5'X)
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Latent index model

* Let Y/ = §'X; + ¢; denote a latent index and suppose that
we observe Y; = 1(Y; > 0).
® back to generic notation where X; can include a “treatment”
and “controls”

e If ¢; and X; are independent then

Pr(Y;=11X) = F,(5'X)

e if F,, is the standard normal cdf this is the probit model

o if F,(x) = 72200 this is the logit model

e if F,,(x) = x1(0 < x < 1) this is the linear probability model
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Latent index model

¢ The latent index may have a structural interpretation
(random utility, shadow price, etc.).

¢ In the structural interpretation it often does not make sense
to restrict the standard deviation of ¢;.

* Assume that ¢; | X; ~ N(0,02)
®* Then

Y, = 1(8'X; +¢5; > 0)

Oc
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Latent index model

¢ The latent index may have a structural interpretation
(random utility, shadow price, etc.).
¢ In the structural interpretation it often does not make sense
to restrict the standard deviation of ¢;.
* Assume that ¢; | X; ~ N(0,02)
® Then

Y, = 1(8'X; +¢5; > 0)

o Thus Pr(Yi=1]X)=o (fi’x,-)

Oc

® so we can’t separate S from o,
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Marginal effects

e marginal effect of a continuous regressor:
2 Pr(Yi=1]X; = x) = Bt (8'%)
¢ the partial effect of a discrete regressor
* Suppose X; = (D, X;).
* We estimate the partial effect of D; as a difference:
Fe,(Bo + B1 + B2X) — Fe,(Bo + BaX)
e marginal effects at the mean: fif.,(5'X)
e average marginal effect: SxE (£, (8'X;))
® margins command in Stata
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Estimation

e estimation is via maximum likelihood:
B =maxsy_ Yiln (F.(8'X)) + (1 = Y))In (1 - F(8'X)))
i=1

¢ in small samples or high dimensional models you might
experience convergence problems:
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Estimation

e estimation is via maximum likelihood:

B =maxsy_ Yiln (F.(8'X)) + (1 = Y))In (1 - F(8'X)))
i=1

¢ in small samples or high dimensional models you might
experience convergence problems:

¢ the MLE does not exist if there is a 3 such that 5’X; > 0 for
alli:Yi=0and g/X;<Oforalli:Y;=1

* it is not clear whether Stata is able to catch all cases of this

e if the “overlap” is small and there are many regressors then
Stata’s algorithm my have difficulty converging

® problems with approximating probit cdf when probabilites
are close to 0/1 (outliers)
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Binary choice Structural estimation methods Multinomial models Application 1 Application 2

probit/logit versus OLS

e causal effects in the latent index model:
* independence between ¢; and (D;, X;) implies CIA
® then

ox = E(Y1i = Yoi | Xi = x)
= Fa,'(BO +/61 +6éx) - Fei(ﬁo +ﬁéx)

® nonlinearity induces heterogeneous effects

More examples

e if the model is not fully saturated in X, the nonlinearity can

make problems even worse
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probit/logit versus OLS

e causal effects in the latent index model:
* independence between ¢; and (D;, X;) implies CIA
® then

ox = E(Yii = Yoi | Xi = X)
= Fa,'(BO + 61 +ﬁéx) - FE/‘(ﬁO +ﬂéx)

® nonlinearity induces heterogeneous effects
e if the model is not fully saturated in X, the nonlinearity can
make problems even worse

* misspecification is a valid concern
® suppose ¢; is heteroskedastic
® one solution to this problem is a semiparametric model
(average derivative methods or maximum score methods)
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lllustration of OLS bias

¢ | simulated the following model:

X; ~ N(0,1)
Di=1(v+Xi > vVvj), Vi~ N(0,1)
\/i = 1(05DI+)(I > Ui)v uj ~ N(Oa1)

e The ATE is E (®(.5+ Xj) — (X)) =~ 0.14
¢ | simulate the model for a grid of values of v9 between —3
and 3 for n = 1000 observations.
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[llustration of OLS bias

02 OLS estimation of Probit model
» T T T

0.15 - B

0.1 B

— Mean of OLS
—ATE

0.05 I I I I I
3

To



Structural estimation methods
900000000

Structural models

Over the next few lectures | want to introduce you to
structural estimation methods.

Today | begin by familiarizing you with some nonlinear
models which are commonly used.

We will also take about maximum likelihood because this
gives us practice in moving from an economic model to an
econometric specification.

Next class we will discuss other estimation methods.
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Maximum likelihood

* You've seen theoretical conditions for maximum likelihood
estimation before. See Cameron and Trivedi for a review.

e Suppose we observe a vector of outcomes Y; and
covariates X;.

e Our model fully specifies, up to a parameter vector g, the
distribution of Y; conditional on X; via a density

fyix(Yi | Xi; ).
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Maximum likelihood

e With iid data, the likelihood function is

L(B) = I fvx(Yi | Xi:8)

i=1
* Let £(B) = log(L(B)) = 321 log(fyjx(Yi | Xi; 3)). Then

BuLe = arg max L(B)
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Properties of MLE

* Bue —p B and vn(Bue — B) —q N(0,Z-") where
LA p//m,HooN ag)agé?) (Fisher information matrix)
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Properties of MLE

* Bue —p B and vn(Bue — B) —q N(0,Z-") where

LA p//m,HooN 8/(3)85/;,6) (Fisher information matrix)

o E( 8% ) agéf?)) -E ( 85%%)) (information matrix
equality)




Binary choice Structural estimation methods Multinomial models Application 1 Application 2 More examples
00000000000 000080000 000000000000 [e]e] 0000000 000000000

Properties of QMLE

* Suppose fyx(Y; | Xj; B) is not the correct density.

* Buie —p %, pseudo-true value that maximizes
plimy_soc 1£(5)
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Properties of QMLE

* Suppose fyx(Y; | Xi; 3) is not the correct density.

* Buie —p %, pseudo-true value that maximizes
plimy o 1£(B)
* /n(Bue — B*) —q N(0,A~"BA~") where

, . 2
* B= p//mnﬁm%—agif) agé/la) and A= pllmnﬁooﬁi‘z[fgg,)

More examples
000000000
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Properties of (Q)MLE

e Under correct specification, A-1BA~' =B~ =71,
e Example:
® OLS is equivalent to MLE assuming homoskedastic normal
errors
® |f errors are heteroskedastic, we can use a sandwich
formula that accounts for heteroskedasticity
(Eicker-Huber-White standard errors)
® In this case, the pseudo-true value is 3.
* The “robust” option for a probit does the same thing, but the
pseudo-true value is not 3
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Nonlinear least squares

¢ The nonlinear least squares (NLS) estimator is an
alternative to MLE.
* |ess efficient than MLE
® but relies on weaker distributional assumptions

More examples
000000000
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Nonlinear least squares

¢ The nonlinear least squares (NLS) estimator is an
alternative to MLE.

* |ess efficient than MLE
® but relies on weaker distributional assumptions

* Suppose Y; = g(X;, ) + u; and E(u; | X;) = 0.
* Then Byis Minimizes

n

> (Y- a(X. 8))

i=1
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Nonlinear least squares

e Sandwich variance matrix:

* Bas —p B and vn(Bns — B) —a N(O,A-1BA~)

* where A = plims_0o+ 37, ’998”5) 69(6’,’5 and

B= p/lmn_mﬁ Z,‘:1 Zj:1 E(uy; | X) ag(x,,ﬁ) 69();,;6)

More examples
000000000
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Other estimators

e Variations on NLS (e.g., FGNLS)
¢ GMM (more on this in a few classes)
e simulation-based versions of these
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Random utility model for multinomial outcomes

We can start with a very general random utility model.
¢ Individual (or household, firm, etc.) i has a choice among m
alternatives.
® Forj=1,...,m, utility for choice j is U; = Vjj + ¢ where V;
will be a function of observables and ¢; is unobservable.
® Then the probability that i chooses j (conditional on
observables) is:

pj:=Pr (U,'j = k_TaXmUik)

[RRRE}

:PI’(E,'k—E,'jS V,'/'—V,'kal'a”k;éj)
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Random utility model for multinomial outcomes

* The log likelihood is then "7, >°7, log(pj)y; where yj is
equal to 1 if observation i chose option j and 0 otherwise.
e There are then two choices to make:
® how to specify Vj,...,V;
® how to specify the joint distribution of j1, ..., ejm
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Multinomial logit model

¢ Logit models are derived from the assumption that
£i1,-..,€jm are independent with identical type 1 extreme

value distributions
® sometimes called the Gumbel distribution, sometimes
abbreviated EV1, this distribution has cdf F(x) = e=¢ "

¢ Under this assumption,

oy = r:xp(\//j)
> k=1 exp( V)
_ exp(Vjj — Vi)
1k exp( Vi — Vi)
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Multinomial logit model

Independence of irrelevant alternatives (l1A)
* Notice that for two choices j # k,

pi _ exp(Vj)

pix  exp(Vi)

* The relative probability of the two options is not affected by
other options at all!
® “red bus-blue bus” problem
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Multinomial logit model

Specifying Vj;
* What makes utility of one choice higher than utility of
another?
® choice-specific characteristics, including price
® preferences, which vary with individual characteristics

* A general model that includes both: Vj = 8'x; + ~jw;

® x; are choice-specific characteristics, which may also vary
with the individual

® w; is an individual characteristic and ; reflects how this
characteristic influence utility of choice j

® note that we must normalize v = 0



Binary choice Structural estimation methods Multinomial models Application 1 Application 2 More examples
00000000000 000000000 000008000000 oo 0000000 000000000

Multinomial logit model

Specifying Vj;
* note that Vjj — Vi = B'(xj — Xin) + (v — 11)' Wi
® we can always add the same constant to 7; and s and the
likelihood does not change
® so we must normalize v1 =0
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Multinomial logit model

Marginal effects
® For the choice-specific variables:

opy

opiji ,
ax,-:/( = —pjpiB, Kk # |

® For regressors that don’t vary with choice:

opji U
8Wj,' = Pjj <7j - Z '7kpik>

k=1

More examples
000000000
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Multinomial logit model

Log odds ratio interpretation
o |f V,'/' = ’y;W,' then

P ) '
| — | =(y— w;
og (pik (’7] k) Wi

® Since v = 0, coefficient estimates 4; can then be
interpreted as the increase in the log odds ratio of choice j
relative to choice 1 due to a one unit increase in w;.
Alternatively, we can simulate the model to answer
different policy counterfactuals.
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Multinomial logit model

In Stata
® mlogit
® data structure — each row is an individual and the depvar is
a categorical variable
® syntax —mlogit depvar indepvars,
baseoutcome (value) where value is the value for the
dependent variable indicating the choice where we impose
the normalization
® model — only works for V; = 'y/{W,'
® asclogit
® data structure — each row is an individual, choice pair and
the depvar is a dummy variable
® gyntax —asclogit depvar indepvars, case (id)
alternatives (choice) basealternative (value)
where value is the value for the dependent variable
indicating the choice where we impose the normalization.
® model — works for Vjj = 3'x; + ~/w;
® w; are specified using casevars option
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Multinomial logit model

More on l1A
* Suppose Vjj = a - pricej + B'Xjj + v w;.

* Then the cross price elasticity ( 83’,’;’# p’,’;‘fjek

) is equal to

QpricexPi.

It is the same for all j!!

One solution is to model the correlations between ¢; and ¢j
explicitly (see multinomial probit next class).

* Two more solutions will be previewed.
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Nested logit model

* In some cases we can group choices together — red bus
and blue bus are both buses.

e The nested logit models the probability of choosing option
k which is part of group j by

Pik = Pj X Pk

* For the nested logit with Vjx = o/ z; + 3'xj for J groups
where group j has K; choices:

_ exp(/Z + pjl;) exp ((81/p3)' %)
Dot &P(0'Z+ pjh) S5y exp ((B1/ 7)Y %1)

Pik
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Random coefficients logit model

e We can generalize the utility model to include an
individual-specific coefficient that is treated as a “random
effect” Vjj = Bixj.

e |n this model,
pj = / pi(B)F3, (1) A5,

exp(8'x;)
where p;(5) = m

* Typically f5 is specified as a normal distribution with a
mean and variance to be estimated.
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Kleven et al. (2013)

e A model for country choice (of European football players).

® The multinomial choice model: for player i in time ¢ playing
in country n yields utility:

UL, = alog(1 — 7},) + alog(wl,) + homel, + x.Bn + vn + vl
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Kleven et al. (2013)

e A model for country choice (of European football players).

® The multinomial choice model: for player i in time ¢ playing
in country n yields utility:

UL, = alog(1 — 7},) + alog(wl,) + homel, + x.Bn + vn + vl

* multinomial logit

® can you map the notation here to the general notation for
the multinomial logit above in the slides?

* various specifications to account for not observing w/,

® probability that i chooses nin year t is
Pl = Pr(Uy > Ul vm)
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Kleven et al. (2013)

¢ Tax elasticities:
® they compare estimates of

n d|0g(2ieln Prin)

= — _ pd
€ domestic dlog(1 — 7ng) o(1—P7)

and

o leg(Zielff Pri7t) —a(1 - I_Df)
foreign — d|0g(1 *Tnf) - n

¢ these formulas show how restrictive the multinomial logit
can be
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Christensen and Kiefer

A job search model
® Suppose job offers are distributed according to a density
f(w).
* There is a reservation wage w, such that each worker i
accepts offer w; if w; > w;.
® The distribution of accepted offers is

9g(w) = W“W > wr)

wr
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Christensen and Kiefer

Taking the model to data
® Suppose f(w) and w;, are parameterized by a vector 6.
* We observe a sample of wages for workers (who are
assumed to have accepted a wage offer).
® So we observe (wy, ..., w,), an iid sample from g(w).
® Thus, the likelihood is

T f(wi; 0) ,
L0 =11y gy (2 WlO)
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Christensen and Kiefer

Taking the model to data
® One option is to take f(w) = yexp(—y(w — c)).
® |t turns out that g does not end up depending on ¢ so we
can take 6 = (y, w;) and

L(0) = ~"exp (—7 Z(W,- — W,)) 1(min(w;) > w;)
i=1

* This likelihood function has some weird properties
(regardless of how f(w) is parameterized; assumption (iv)
in Prop 5.5 in CT; see the paper for details) so the authors
assume wages are observed with error.
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Christensen and Kiefer

Model with measurement error

* |tis assumed that we observe w? = w;m; where w; is iid
from g(w).

* They maintain the shifted exponential assumption,
f(w) = 7 exp(—(W — ©)).

® The measurement error, m; is assumed to have density
h(m;) with support on [0, co).

* Note then that for any x,

Pr(w? < x) = / Pr(w; < % | m;)h(m;)dm;
0 i
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Christensen and Kiefer

Model with measurement error
® This can be written as

X/ wy
Pr(w? < x) = /0 (1 — exp(—~(x/m; — wy))) h(m;)dm;

* To derive the likelihood function we need the density of w?,
which will be denoted fo(x).

fo(x) = C%(Pr(w,-e < x)
X/ w, 1
= vexplome) [ Lo(m) exp(—x/m)om

® This is derived assuming certain properties of h.
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Christensen and Kiefer

Specifying the distribution of measurement error

® First, the density h must satisfy some properties for f to
take the form on the previous slide.

® Second, we want to use a flexible family of distributions as
we do not know much about what the distribution should
look like.

* Further, we want the resulting expression for f, to be
tractable.
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Christensen and Kiefer

The resulting fe:
Density

04 —

03 -

0.1 I~

FIG. 1.-—Observed wage densities
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Likelihood function

* Moving from a model, written in equations, to the
appropriate likelihood function?

e Can be difficult if your model isn’t a textbook case.
* Here | will provide some examples.
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Censoring

e | et Y* denote the outcome of interest.

¢ (Right-) censoring occurs when we observe Y = Y* if
Y* < C and we observe Y = C for the individuals with
Y*> C.

e We will consider both the case where C varies across
individuals and the case where it is a constant.
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Truncation

e | et Y* denote the outcome of interest.

¢ Truncation occurs when we observe Y = Y* if Y* < C and
we don’t observe the individuals with Y* > C at all (as in
the Christensen and Kiefer model).

e Again, C may or may not vary across individuals.
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Censoring

¢ Consider a sample of durations (y1, ..., ys) and covariates
(X1,...,Xn)-

e Suppose the conditional density for Y* is given by
f(y | x,0).

e If y; = y; for all i then the likelihood is simply
L(0) = XL log(f(yi | xi,0)).

e What if some observations are censored?
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Censoring

¢ Non-random censoring:

® The likelihood should be the distribution of what we
observe.
* Here we observe both Y; and D; = 1(Y;* < C).
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Censoring

¢ Non-random censoring:

® The likelihood should be the distribution of what we
observe.

* Here we observe both Y; and D; = 1(Y;* < C).

e lfdi=1then Pr(Y;=y,Di=di | Xi)=Pr(Y/ =y, Y}
C| X)) = Pr(Yy =y | X).

® |f d;=0then y, = Cand
Pr(Y: =y, Di = di | X;) = Pr(Y; > C | X).

IN
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Censoring

¢ Non-random censoring:

® The likelihood should be the distribution of what we
observe.
Here we observe both Y; and D; = 1(Y; < C).
Ifdi=1then Pr(Yi=y,,Di=d | X;) =Pr(Y =y, Y/ <
C| X)) = Pr(Yy =y | X).
If di = 0then y; = C and
Pr(Y: =y, Di = di | X;) = Pr(Y; > C | X).
So the log-likelihood is given by

ZDln 0 100 + (1= )i ([~ 1y .00 )
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Censoring

e Random censoring:
® Suppose censoring times are random, C;, with distribution
fC|X(C ‘ X,g).
* Assume that Y;* and C; are independent conditional on X;.
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Censoring

e Random censoring:
® Suppose censoring times are random, C;, with distribution
fC|X(C ‘ X79).
* Assume that Y;* and C; are independent conditional on X;.
° [f di =1 then

Pr(lYi=yi,Di=d | X)) =Pr(Y7 =y, Y <Ci| X)
= Pr(Y} =y, Ci > yi | Xi)

ge o)

— f(y; | %,0) / foly | x,0)dy
,
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Censoring

e Random censoring:
® Suppose censoring times are random, C;, with distribution
fC|X(C ‘ X79).
* Assume that Y;* and C; are independent conditional on X;.
° [f di =1 then

Pr(lYi=yi,Di=d | X)) =Pr(Y7 =y, Y <Ci| X)
=Pr(Y" =y, Ci>yi| X)

ge o)

— f(y | x.6) / foly | . 0)dy
,
® |If di = 0then y; = C; and

Pr(Y; = yi, D = d | X)) = Pr(Ci = yi, Yi > Gi | X)

= fe(yi | Xi,0) f(y | xi,0)dy
Yi
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® non-random censoring:
® The likelihood should be the distribution of what we
observe, conditional on being observed.
® This is usually implicit.

More examples
000000800



More examples
000000800

Truncation

® non-random censoring:
® The likelihood should be the distribution of what we
observe, conditional on being observed.
® This is usually implicit.
® Here,

Pr(Yi=yi I Di=1,x)=Pr(Y =yi| Y/ <C,x)
PrY =y, Y <Clx)
Pr(Yyr < Cx)

_ A1 %.0)
SO Ay | xi,6)dy
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Truncation

® non-random censoring:

® The likelihood should be the distribution of what we
observe, conditional on being observed.

® This is usually implicit.

® Here,

Pr(Yi=yi I Di=1,x)=Pr(Y =yi| Y/ <C,x)
Pr(Yi =y, Y < Clx)
Pr(Y; <C[x)
_ A1 %.0)
JEL Ay | X, 0)dy

® So the log-likelihood is

- lo (f(y,'|X,‘,9))—|O (
; g g /

— 00

c
fly | X/aa)dy>
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Truncation

® random censoring:
* Now we get

Pr(Yi=yi| Di=1,x)=Pr(Y; =y | Y < Ci, x;)
_Pr(Yi=y, Y < Ci| x)
Pr(Y: < Ci| xi)
f(yi | xi,0)(1 — Fe(yi | xi,6))
[y X, 0) (1 — Fe(y | xi,0))dy
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Identification

¢ An important part of structural modeling: determining
model identification

® Just because we can write down a likelihood function does
not mean the model is identified.
® Consider the random censoring model:
® suppose we assume instead that D; = 1(Y;" < Ci + &)
® we can add a constant to ¢, and shift the density of C; by the
same constant without changing the likelihood function
® so the model is not identified!

* We will give some more examples of this next week.



	Binary choice
	

	Structural estimation methods
	

	Multinomial models
	

	Application 1
	

	Application 2
	

	More examples
	


