Lecture 5. Nonlinear regression models

Economics 8379
George Washington University

Instructor: Prof. Ben Williams

Binary choice

If Y_{i} is binary then $E\left(Y_{i} \mid X_{i}=x\right)=\operatorname{Pr}\left(Y_{i}=1 \mid X=x\right)$

- the CEF is likely not linear
- but OLS provides the best linear approximation to the CEF, $\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)$

Binary choice

- Suppose D_{i} is a randomly assigned binary treatment variable.
- let $\beta^{O L S}$ denote the OLS estimand from a regression of Y_{i} on D_{i}
- then

$$
\beta^{O L S}=E\left(Y_{i} \mid D_{i}=1\right)-E\left(Y_{i} \mid D_{i}=0\right)=A T E
$$

Binary choice

- Suppose that $\left(Y_{1 i}, Y_{0 i}\right) \Perp D_{i} \mid X_{i}$
- if the model is fully saturated in X_{i},

$$
\beta^{O L S}=\sum_{x} \delta_{x} w_{x}
$$

where

- w_{x} are weights proportional to $P(x)(1-P(x)) \operatorname{Pr}\left(X_{i}=x\right)$
- $\delta_{x}=E\left(Y_{1}-Y_{0} \mid X_{i}=x\right)$

AP's reasons to avoid probit/logit

- "regression gives us what we need with or without the probit distributional assumptions"
- "if the CEF has a causal interpretation, it seems fair to say that regression has a causal interpretation as well, because it still provides the MMSE approximation to the CEF"
- "...while a nonlinear model may fit the CEF ... more closely than a linear model, when it comes to marginal effects, this probably matters little."
- too many decisions to make along the way, while OLS is standardized
- life gets more complicated with IV and panel data

Latent index model

- Let $Y_{i}^{*}=\beta^{\prime} X_{i}+\varepsilon_{i}$ denote a latent index and suppose that we observe $Y_{i}=\mathbf{1}\left(Y_{i}^{*} \geq 0\right)$.

Latent index model

- Let $Y_{i}^{*}=\beta^{\prime} X_{i}+\varepsilon_{i}$ denote a latent index and suppose that we observe $Y_{i}=\mathbf{1}\left(Y_{i}^{*} \geq 0\right)$.
- back to generic notation where X_{i} can include a "treatment" and "controls"

Latent index model

- Let $Y_{i}^{*}=\beta^{\prime} X_{i}+\varepsilon_{i}$ denote a latent index and suppose that we observe $Y_{i}=\mathbf{1}\left(Y_{i}^{*} \geq 0\right)$.
- back to generic notation where X_{i} can include a "treatment" and "controls"
- If ε_{i} and X_{i} are independent then

$$
\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=F_{\varepsilon_{i}}\left(\beta^{\prime} X_{i}\right)
$$

Latent index model

- Let $Y_{i}^{*}=\beta^{\prime} X_{i}+\varepsilon_{i}$ denote a latent index and suppose that we observe $Y_{i}=\mathbf{1}\left(Y_{i}^{*} \geq 0\right)$.
- back to generic notation where X_{i} can include a "treatment" and "controls"
- If ε_{i} and X_{i} are independent then

$$
\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=F_{\varepsilon_{i}}\left(\beta^{\prime} X_{i}\right)
$$

- if $F_{\varepsilon_{i}}$ is the standard normal cdf this is the probit model
- if $F_{\varepsilon_{i}}(x)=\frac{\exp (x)}{1+\exp (x)}$ this is the logit model
- if $F_{\varepsilon_{i}}(x)=x \mathbf{1}(0 \leq x \leq 1)$ this is the linear probability model

Latent index model

- The latent index may have a structural interpretation (random utility, shadow price, etc.).
- In the structural interpretation it often does not make sense to restrict the standard deviation of ε_{i}.
- Assume that $\varepsilon_{i} \mid X_{i} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$
- Then

$$
\begin{aligned}
Y_{i} & =\mathbf{1}\left(\beta^{\prime} X_{i}+\varepsilon_{i} \geq 0\right) \\
& =\mathbf{1}\left(\frac{\beta^{\prime}}{\sigma_{\varepsilon}} X_{i}+\frac{\varepsilon_{i}}{\sigma_{\varepsilon}} \geq 0\right)
\end{aligned}
$$

- Thus $\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=\Phi\left(\frac{\beta^{\prime}}{\sigma_{\varepsilon}} X_{i}\right)$

Latent index model

- The latent index may have a structural interpretation (random utility, shadow price, etc.).
- In the structural interpretation it often does not make sense to restrict the standard deviation of ε_{i}.
- Assume that $\varepsilon_{i} \mid X_{i} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$
- Then

$$
\begin{aligned}
Y_{i} & =\mathbf{1}\left(\beta^{\prime} X_{i}+\varepsilon_{i} \geq 0\right) \\
& =\mathbf{1}\left(\frac{\beta^{\prime}}{\sigma_{\varepsilon}} X_{i}+\frac{\varepsilon_{i}}{\sigma_{\varepsilon}} \geq 0\right)
\end{aligned}
$$

- Thus $\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=\Phi\left(\frac{\beta^{\prime}}{\sigma_{\varepsilon}} X_{i}\right)$
- so we can't separate β from σ_{ε}

Marginal effects

- marginal effect of a continuous regressor:
$\frac{\partial}{\partial x_{k}} \operatorname{Pr}\left(Y_{i}=1 \mid X_{i}=x\right)=\beta_{k} f_{\varepsilon_{i}}\left(\beta^{\prime} x\right)$
- the partial effect of a discrete regressor
- Suppose $X_{i}=\left(D_{i}, \tilde{X}_{i}\right)$.
- We estimate the partial effect of D_{i} as a difference: $F_{\varepsilon_{i}}\left(\beta_{0}+\beta_{1}+\beta_{2}^{\prime} \tilde{x}\right)-F_{\varepsilon_{i}}\left(\beta_{0}+\beta_{2}^{\prime} \tilde{x}\right)$
- marginal effects at the mean: $\beta_{k} f_{\varepsilon_{i}}\left(\beta^{\prime} \bar{X}\right)$
- average marginal effect: $\beta_{k} E\left(f_{\varepsilon_{i}}\left(\beta^{\prime} X_{i}\right)\right)$
- margins command in Stata

Estimation

- estimation is via maximum likelihood:

$$
\hat{\beta}=\max _{\beta} \sum_{i=1} Y_{i} \ln \left(F_{\varepsilon}\left(\beta^{\prime} X_{i}\right)\right)+\left(1-Y_{i}\right) \ln \left(1-F_{\varepsilon}\left(\beta^{\prime} X_{i}\right)\right)
$$

- in small samples or high dimensional models you might experience convergence problems:

Estimation

- estimation is via maximum likelihood:

$$
\hat{\beta}=\max _{\beta} \sum_{i=1} Y_{i} \ln \left(F_{\varepsilon}\left(\beta^{\prime} X_{i}\right)\right)+\left(1-Y_{i}\right) \ln \left(1-F_{\varepsilon}\left(\beta^{\prime} X_{i}\right)\right)
$$

- in small samples or high dimensional models you might experience convergence problems:
- the MLE does not exist if there is a β such that $\beta^{\prime} X_{i} \geq 0$ for all $i: Y_{i}=0$ and $\beta^{\prime} X_{i} \leq 0$ for all $i: Y_{i}=1$
- it is not clear whether Stata is able to catch all cases of this
- if the "overlap" is small and there are many regressors then Stata's algorithm my have difficulty converging
- problems with approximating probit cdf when probabilites are close to $0 / 1$ (outliers)

probit/logit versus OLS

- causal effects in the latent index model:
- independence between ε_{i} and $\left(D_{i}, X_{i}\right)$ implies CIA
- then

$$
\begin{aligned}
\delta_{x} & =E\left(Y_{1 i}-Y_{0 i} \mid X_{i}=x\right) \\
& =F_{\varepsilon_{i}}\left(\beta_{0}+\beta_{1}+\beta_{2}^{\prime} x\right)-F_{\varepsilon_{i}}\left(\beta_{0}+\beta_{2}^{\prime} x\right)
\end{aligned}
$$

- nonlinearity induces heterogeneous effects
- if the model is not fully saturated in X_{i}, the nonlinearity can make problems even worse

probit/logit versus OLS

- causal effects in the latent index model:
- independence between ε_{i} and (D_{i}, X_{i}) implies CIA
- then

$$
\begin{aligned}
\delta_{x} & =E\left(Y_{1 i}-Y_{0 i} \mid X_{i}=x\right) \\
& =F_{\varepsilon_{i}}\left(\beta_{0}+\beta_{1}+\beta_{2}^{\prime} x\right)-F_{\varepsilon_{i}}\left(\beta_{0}+\beta_{2}^{\prime} x\right)
\end{aligned}
$$

- nonlinearity induces heterogeneous effects
- if the model is not fully saturated in X_{i}, the nonlinearity can make problems even worse
- misspecification is a valid concern
- suppose ε_{i} is heteroskedastic
- one solution to this problem is a semiparametric model (average derivative methods or maximum score methods)

Illustration of OLS bias

- I simulated the following model:

$$
\begin{aligned}
& X_{i} \sim N(0,1) \\
& D_{i}=\mathbf{1}\left(\gamma_{0}+X_{i} \geq v_{i}\right), \quad v_{i} \sim N(0,1) \\
& Y_{i}=\mathbf{1}\left(0.5 D_{i}+X_{i} \geq u_{i}\right), \quad u_{i} \sim N(0,1)
\end{aligned}
$$

- The ATE is $E\left(\Phi\left(.5+X_{i}\right)-\Phi\left(X_{i}\right)\right) \approx 0.14$
- I simulate the model for a grid of values of γ_{0} between -3 and 3 for $n=1000$ observations.

Illustration of OLS bias

Structural models

- Over the next few lectures I want to introduce you to structural estimation methods.
- Today I begin by familiarizing you with some nonlinear models which are commonly used.
- We will also take about maximum likelihood because this gives us practice in moving from an economic model to an econometric specification.
- Next class we will discuss other estimation methods.

Maximum likelihood

- You've seen theoretical conditions for maximum likelihood estimation before. See Cameron and Trivedi for a review.
- Suppose we observe a vector of outcomes Y_{i} and covariates X_{i}.
- Our model fully specifies, up to a parameter vector β, the distribution of Y_{i} conditional on X_{i} via a density $f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \beta\right)$.

Maximum likelihood

- With iid data, the likelihood function is

$$
L(\beta)=\prod_{i=1}^{n} f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \beta\right)
$$

- Let $\mathcal{L}(\beta)=\log (L(\beta))=\sum_{i=1}^{n} \log \left(f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \beta\right)\right)$. Then

$$
\hat{\beta}_{M L E}=\arg \max _{\beta} \mathcal{L}(\beta)
$$

Properties of MLE

- $\hat{\beta}_{M L E} \rightarrow_{p} \beta$ and $\sqrt{n}\left(\hat{\beta}_{M L E}-\beta\right) \rightarrow_{d} N\left(0, \mathcal{I}^{-1}\right)$ where
- $\mathcal{I}=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{N} \frac{\partial \mathcal{L}(\beta)}{\partial \beta} \frac{\partial \mathcal{L}(\beta)}{\partial \beta^{\prime}}$ (Fisher information matrix)

Properties of MLE

- $\hat{\beta}_{M L E} \rightarrow_{p} \beta$ and $\sqrt{n}\left(\hat{\beta}_{M L E}-\beta\right) \rightarrow_{d} N\left(0, \mathcal{I}^{-1}\right)$ where
- $\mathcal{I}=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{N} \frac{\partial \mathcal{L}(\beta)}{\partial \beta} \frac{\partial \mathcal{L}(\beta)}{\partial \beta^{\prime}}$ (Fisher information matrix)
- $E\left(\frac{\partial \mathcal{L}(\beta)}{\partial \beta} \frac{\partial \mathcal{L}(\beta)}{\partial \beta^{\prime}}\right)=-E\left(\frac{\partial^{2} \mathcal{L}(\beta)}{\partial \beta \partial \beta^{\prime}}\right)$ (information matrix equality)

Properties of QMLE

- Suppose $f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \beta\right)$ is not the correct density.
- $\hat{\beta}_{M L E} \rightarrow_{p} \beta^{*}$, pseudo-true value that maximizes $\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \mathcal{L}(\beta)$

Properties of QMLE

- Suppose $f_{Y \mid X}\left(Y_{i} \mid X_{i} ; \beta\right)$ is not the correct density.
- $\hat{\beta}_{\text {MLE }} \rightarrow_{p} \beta^{*}$, pseudo-true value that maximizes $\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \mathcal{L}(\beta)$
- $\sqrt{n}\left(\hat{\beta}_{M L E}-\beta^{*}\right) \rightarrow_{d} N\left(0, A^{-1} B A^{-1}\right)$ where
- $B=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{N} \frac{\partial \mathcal{L}(\beta)}{\partial \beta} \frac{\partial \mathcal{L}(\beta)}{\partial \beta^{\prime}}$ and $A=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{N} \frac{\partial^{2} \mathcal{L}(\beta)}{\partial \beta \partial \beta^{\prime}}$

Properties of (Q)MLE

- Under correct specification, $A^{-1} B A^{-1}=B^{-1}=\mathcal{I}^{-1}$.
- Example:
- OLS is equivalent to MLE assuming homoskedastic normal errors
- If errors are heteroskedastic, we can use a sandwich formula that accounts for heteroskedasticity (Eicker-Huber-White standard errors)
- In this case, the pseudo-true value is β.
- The "robust" option for a probit does the same thing, but the pseudo-true value is not β

Nonlinear least squares

- The nonlinear least squares (NLS) estimator is an alternative to MLE.
- less efficient than MLE
- but relies on weaker distributional assumptions

Nonlinear least squares

- The nonlinear least squares (NLS) estimator is an alternative to MLE.
- less efficient than MLE
- but relies on weaker distributional assumptions
- Suppose $Y_{i}=g\left(X_{i}, \beta\right)+u_{i}$ and $E\left(u_{i} \mid X_{i}\right)=0$.
- Then $\hat{\beta}_{N L S}$ minimizes

$$
\sum_{i=1}^{n}\left(Y_{i}-g\left(X_{i}, \beta\right)\right)^{2}
$$

Nonlinear least squares

- Sandwich variance matrix:
- $\hat{\beta}_{N L S} \rightarrow_{p} \beta$ and $\sqrt{n}\left(\hat{\beta}_{N L S}-\beta\right) \rightarrow_{d} N\left(0, A^{-1} B A^{-1}\right)$
- where $A=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\partial g\left(X_{i}, \beta\right)}{\partial \beta} \frac{\partial g\left(X_{i}, \beta\right)}{\partial \beta^{\prime}}$ and

$$
B=\operatorname{plim}_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} E\left(u_{i} u_{j} \mid X\right) \frac{\partial g\left(X_{i}, \beta\right)}{\partial \beta} \frac{\partial g\left(X_{i}, \beta\right)}{\partial \beta^{\prime}}
$$

Other estimators

- Variations on NLS (e.g., FGNLS)
- GMM (more on this in a few classes)
- simulation-based versions of these

Random utility model for multinomial outcomes

We can start with a very general random utility model.

- Individual (or household, firm, etc.) i has a choice among m alternatives.
- For $j=1, \ldots, m$, utility for choice j is $U_{i j}=V_{i j}+\varepsilon_{i j}$ where $V_{i j}$ will be a function of observables and $\varepsilon_{i j}$ is unobservable.
- Then the probability that i chooses j (conditional on observables) is:

$$
\begin{aligned}
p_{i j} & :=\operatorname{Pr}\left(U_{i j}=\max _{k=1, \ldots, m} U_{i k}\right) \\
& =\operatorname{Pr}\left(\varepsilon_{i k}-\varepsilon_{i j} \leq V_{i j}-V_{i k} \text { for all } k \neq j\right)
\end{aligned}
$$

Random utility model for multinomial outcomes

- The log likelihood is then $\sum_{i=1}^{n} \sum_{j=1}^{m} \log \left(p_{i j}\right) y_{i j}$ where $y_{i j}$ is equal to 1 if observation i chose option j and 0 otherwise.
- There are then two choices to make:
- how to specify $V_{i 1}, \ldots, V_{i m}$
- how to specify the joint distribution of $\varepsilon_{i 1}, \ldots, \varepsilon_{i m}$

Multinomial logit model

- Logit models are derived from the assumption that $\varepsilon_{i 1}, \ldots, \varepsilon_{i m}$ are independent with identical type 1 extreme value distributions
- sometimes called the Gumbel distribution, sometimes abbreviated EV1, this distribution has $\operatorname{cdf} F(x)=e^{-e^{-x}}$
- Under this assumption,

$$
\begin{aligned}
p_{i j} & =\frac{\exp \left(V_{i j}\right)}{\sum_{k=1}^{m} \exp \left(V_{i j}\right)} \\
& =\frac{\exp \left(V_{i j}-V_{i 1}\right)}{1+\sum_{k=2}^{m} \exp \left(V_{i j}-V_{i 1}\right)}
\end{aligned}
$$

Multinomial logit model

Independence of irrelevant alternatives (IIA)

- Notice that for two choices $j \neq k$,

$$
\frac{p_{i j}}{p_{i k}}=\frac{\exp \left(V_{i j}\right)}{\exp \left(V_{i k}\right)}
$$

- The relative probability of the two options is not affected by other options at all!
- "red bus-blue bus" problem

Multinomial logit model

Specifying $V_{i j}$

- What makes utility of one choice higher than utility of another?
- choice-specific characteristics, including price
- preferences, which vary with individual characteristics
- A general model that includes both: $V_{i j}=\beta^{\prime} x_{i j}+\gamma_{j}^{\prime} w_{i}$
- $x_{i j}$ are choice-specific characteristics, which may also vary with the individual
- w_{i} is an individual characteristic and γ_{j} reflects how this characteristic influence utility of choice j
- note that we must normalize $\gamma_{1}=0$

Multinomial logit model

Specifying $V_{i j}$

- note that $V_{i j}-V_{i 1}=\beta^{\prime}\left(x_{i j}-x_{i 1}\right)+\left(\gamma_{j}-\gamma_{1}\right)^{\prime} w_{i}$
- we can always add the same constant to γ_{j} and γ_{1} and the likelihood does not change
- so we must normalize $\gamma_{1}=0$

Multinomial logit model

Marginal effects

- For the choice-specific variables:

$$
\begin{aligned}
& \frac{\partial p_{i j}}{\partial x_{i j}}=p_{i j}\left(1-p_{i j}\right) \beta \\
& \frac{\partial p_{i j}}{\partial x_{i k}}=-p_{i j} p_{i k} \beta, k \neq j
\end{aligned}
$$

- For regressors that don't vary with choice:

$$
\frac{\partial p_{i j}}{\partial w_{i}}=p_{i j}\left(\gamma_{j}-\sum_{k=1}^{m} \gamma_{k} p_{i k}\right)
$$

Multinomial logit model

Log odds ratio interpretation

- If $V_{i j}=\gamma_{j}^{\prime} w_{i}$ then

$$
\log \left(\frac{p_{i j}}{p_{i k}}\right)=\left(\gamma_{j}-\gamma_{k}\right)^{\prime} w_{i}
$$

- Since $\gamma_{1}=0$, coefficient estimates $\hat{\gamma}_{j}$ can then be interpreted as the increase in the log odds ratio of choice j relative to choice 1 due to a one unit increase in w_{i}.
Alternatively, we can simulate the model to answer different policy counterfactuals.

Multinomial logit model

In Stata

- mlogit
- data structure - each row is an individual and the depvar is a categorical variable
- syntax-mlogit depvar indepvars, baseoutcome (value) where value is the value for the dependent variable indicating the choice where we impose the normalization
- model - only works for $V_{i j}=\gamma_{j}^{\prime} w_{i}$
- asclogit
- data structure - each row is an individual, choice pair and the depvar is a dummy variable
- syntax-asclogit depvar indepvars, case(id) alternatives(choice) basealternative(value) where value is the value for the dependent variable indicating the choice where we impose the normalization.
- model - works for $V_{i j}=\beta^{\prime} x_{i j}+\gamma_{j}^{\prime} w_{i}$
- w_{i} are specified using casevars option

Multinomial logit model

More on IIA

- Suppose $V_{i j}=\alpha \cdot$ price $_{j}+\beta^{\prime} x_{i j}+\gamma_{j}^{\prime} w_{i}$.
- Then the cross price elasticity $\left(\frac{\partial p_{i j}}{\partial p r i c e} k \frac{\text { price }}{k}\right) ~$ is equal to

$$
\alpha \text { price }_{k} p_{i k} .
$$

- It is the same for all j !!
- One solution is to model the correlations between $\varepsilon_{i j}$ and $\varepsilon_{i k}$ explicitly (see multinomial probit next class).
- Two more solutions will be previewed.

Nested logit model

- In some cases we can group choices together - red bus and blue bus are both buses.
- The nested logit models the probability of choosing option k which is part of group j by

$$
p_{j k}=p_{j} \times p_{k \mid j}
$$

- For the nested logit with $V_{j k}=\alpha^{\prime} z_{j}+\beta^{\prime} x_{j k}$ for J groups where group j has K_{j} choices:

$$
p_{j k}=\frac{\exp \left(\alpha^{\prime} z_{j}+\rho_{j} I_{j}\right)}{\sum_{m=1}^{J} \exp \left(\alpha^{\prime} z_{j}+\rho_{j} l_{j}\right)} \frac{\exp \left(\left(\beta_{j} / \rho_{j}\right)^{\prime} x_{j k}\right)}{\sum_{l=1}^{K_{j}} \exp \left(\left(\beta_{j} / \rho_{j}\right)^{\prime} x_{j l}\right)}
$$

Random coefficients logit model

- We can generalize the utility model to include an individual-specific coefficient that is treated as a "random effect" $V_{i j}=\beta_{i}^{\prime} x_{i j}$.
- In this model,

$$
p_{i j}=\int p_{i j}\left(\beta_{i}\right) f_{\beta_{i}}\left(\beta_{i}\right) d \beta_{i}
$$

where $p_{i j}(\beta)=\frac{\exp \left(\beta^{\prime} x_{i j}\right)}{\sum_{k=1}^{m} \exp \left(\beta^{\prime} x_{i k}\right)}$

- Typically $f_{\beta_{i}}$ is specified as a normal distribution with a mean and variance to be estimated.

Kleven et al. (2013)

- A model for country choice (of European football players).
- The multinomial choice model: for player i in time t playing in country n yields utility:

$$
U_{n t}^{i}=\alpha \log \left(1-\tau_{n t}^{i}\right)+\alpha \log \left(w_{n t}^{i}\right)+h o m e_{n}^{i}+x_{t}^{i} \beta_{n}+\gamma_{n}+\nu_{n t}^{i}
$$

Kleven et al. (2013)

- A model for country choice (of European football players).
- The multinomial choice model: for player i in time t playing in country n yields utility:

$$
U_{n t}^{i}=\alpha \log \left(1-\tau_{n t}^{i}\right)+\alpha \log \left(w_{n t}^{i}\right)+h o m e_{n}^{i}+x_{t}^{i} \beta_{n}+\gamma_{n}+\nu_{n t}^{i}
$$

- multinomial logit
- can you map the notation here to the general notation for the multinomial logit above in the slides?
- various specifications to account for not observing $w_{n t}^{i}$
- probability that i chooses n in year t is $P_{n t}^{i}=\operatorname{Pr}\left(U_{n t}^{i} \geq U_{m t}^{i} \quad \forall m\right)$

Kleven et al. (2013)

- Tax elasticities:
- they compare estimates of

$$
\varepsilon_{\text {domestic }}^{n}=\frac{d \log \left(\sum_{i \in I_{n}} P_{n t}^{i}\right)}{d \log \left(1-\tau_{n d}\right)}=\alpha\left(1-\bar{P}_{n}^{d}\right)
$$

and

$$
\varepsilon_{\text {foreign }}^{n}=\frac{d \log \left(\sum_{i \in l_{n}^{c}} P_{n t}^{i}\right)}{d \log \left(1-\tau_{n f}\right)}=\alpha\left(1-\bar{P}_{n}^{f}\right)
$$

- these formulas show how restrictive the multinomial logit can be

Christensen and Kiefer

A job search model

- Suppose job offers are distributed according to a density $f(w)$.
- There is a reservation wage w_{r} such that each worker i accepts offer w_{i} if $w_{i} \geq w_{r}$.
- The distribution of accepted offers is

$$
g(w)=\frac{f(w)}{\int_{w_{r}}^{\infty} f(w) d w} \mathbf{1}\left(w \geq w_{r}\right)
$$

Christensen and Kiefer

Taking the model to data

- Suppose $f(w)$ and w_{r} are parameterized by a vector θ.
- We observe a sample of wages for workers (who are assumed to have accepted a wage offer).
- So we observe (w_{1}, \ldots, w_{n}), an iid sample from $g(w)$.
- Thus, the likelihood is

$$
L(\theta)=\prod_{i=1}^{n} \frac{f\left(w_{i} ; \theta\right)}{\int_{w_{r}(\theta)}^{\infty} f(w ; \theta) d w} \mathbf{1}\left(w_{i} \geq w_{r}(\theta)\right)
$$

Christensen and Kiefer

Taking the model to data

- One option is to take $f(w)=\gamma \exp (-\gamma(w-c))$.
- It turns out that g does not end up depending on c so we can take $\theta=\left(\gamma, \boldsymbol{w}_{r}\right)$ and

$$
L(\theta)=\gamma^{n} \exp \left(-\gamma \sum_{i=1}^{n}\left(w_{i}-w_{r}\right)\right) \mathbf{1}\left(\min \left(w_{i}\right) \geq w_{r}\right)
$$

- This likelihood function has some weird properties (regardless of how $f(w)$ is parameterized; assumption (iv) in Prop 5.5 in CT; see the paper for details) so the authors assume wages are observed with error.

Christensen and Kiefer

Model with measurement error

- It is assumed that we observe $w_{i}^{e}=w_{i} m_{i}$ where w_{i} is iid from $g(w)$.
- They maintain the shifted exponential assumption, $f(w)=\gamma \exp (-\gamma(w-c))$.
- The measurement error, m_{i} is assumed to have density $h\left(m_{i}\right)$ with support on $[0, \infty)$.
- Note then that for any x,

$$
\operatorname{Pr}\left(w_{i}^{e} \leq x\right)=\int_{0}^{\infty} \operatorname{Pr}\left(\left.w_{i} \leq \frac{x}{m_{i}} \right\rvert\, m_{i}\right) h\left(m_{i}\right) d m_{i}
$$

Christensen and Kiefer

Model with measurement error

- This can be written as

$$
\operatorname{Pr}\left(w_{i}^{e} \leq x\right)=\int_{0}^{x / w_{r}}\left(1-\exp \left(-\gamma\left(x / m_{i}-w_{r}\right)\right)\right) h\left(m_{i}\right) d m_{i}
$$

- To derive the likelihood function we need the density of w_{i}^{e}, which will be denoted $f_{e}(x)$.

$$
\begin{aligned}
f_{e}(x) & =\frac{d}{d x} \operatorname{Pr}\left(w_{i}^{e} \leq x\right) \\
& =\gamma \exp \left(\gamma w_{r}\right) \int_{0}^{x / w_{r}} \frac{1}{m} h(m) \exp (-\gamma x / m) d m
\end{aligned}
$$

- This is derived assuming certain properties of h.

Christensen and Kiefer

Specifying the distribution of measurement error

- First, the density h must satisfy some properties for f_{e} to take the form on the previous slide.
- Second, we want to use a flexible family of distributions as we do not know much about what the distribution should look like.
- Further, we want the resulting expression for f_{e} to be tractable.

Christensen and Kiefer

The resulting f_{e} :

Fig. 1.-Observed wage densities

Likelihood function

- Moving from a model, written in equations, to the appropriate likelihood function?
- Can be difficult if your model isn't a textbook case.
- Here I will provide some examples.

Censoring

- Let Y^{*} denote the outcome of interest.
- (Right-) censoring occurs when we observe $Y=Y^{*}$ if $Y^{*} \leq C$ and we observe $Y=C$ for the individuals with $Y^{*}>C$.
- We will consider both the case where C varies across individuals and the case where it is a constant.

Truncation

- Let Y^{*} denote the outcome of interest.
- Truncation occurs when we observe $Y=Y^{*}$ if $Y^{*} \leq C$ and we don't observe the individuals with $Y^{*}>C$ at all (as in the Christensen and Kiefer model).
- Again, C may or may not vary across individuals.

Censoring

- Consider a sample of durations $\left(y_{1}, \ldots, y_{n}\right)$ and covariates $\left(x_{1}, \ldots, x_{n}\right)$.
- Suppose the conditional density for Y^{*} is given by $f(y \mid x, \theta)$.
- If $y_{i}=y_{i}^{*}$ for all i then the likelihood is simply $\mathcal{L}(\theta)=\sum_{i=1}^{n} \log \left(f\left(y_{i} \mid x_{i}, \theta\right)\right)$.
- What if some observations are censored?

Censoring

- Non-random censoring:
- The likelihood should be the distribution of what we observe.
- Here we observe both Y_{i} and $D_{i}=\mathbf{1}\left(Y_{i}^{*} \leq C\right)$.

Censoring

- Non-random censoring:
- The likelihood should be the distribution of what we observe.
- Here we observe both Y_{i} and $D_{i}=\mathbf{1}\left(Y_{i}^{*} \leq C\right)$.
- If $d_{i}=1$ then $\operatorname{Pr}\left(Y_{i}=y_{i}, D_{i}=d_{i} \mid X_{i}\right)=\operatorname{Pr}\left(Y_{i}^{*}=y_{i}, Y_{i}^{*} \leq\right.$ $\left.C \mid X_{i}\right)=\operatorname{Pr}\left(Y_{i}^{*}=y_{i} \mid X_{i}\right)$.
- If $d_{i}=0$ then $y_{i}=C$ and
$\operatorname{Pr}\left(Y_{i}=y_{i}, D_{i}=d_{i} \mid X_{i}\right)=\operatorname{Pr}\left(Y_{i}^{*}>C \mid X_{i}\right)$.

Censoring

- Non-random censoring:
- The likelihood should be the distribution of what we observe.
- Here we observe both Y_{i} and $D_{i}=\mathbf{1}\left(Y_{i}^{*} \leq C\right)$.
- If $d_{i}=1$ then $\operatorname{Pr}\left(Y_{i}=y_{i}, D_{i}=d_{i} \mid X_{i}\right)=\operatorname{Pr}\left(Y_{i}^{*}=y_{i}, Y_{i}^{*} \leq\right.$ $\left.C \mid X_{i}\right)=\operatorname{Pr}\left(Y_{i}^{*}=y_{i} \mid X_{i}\right)$.
- If $d_{i}=0$ then $y_{i}=C$ and

$$
\operatorname{Pr}\left(Y_{i}=y_{i}, D_{i}=d_{i} \mid X_{i}\right)=\operatorname{Pr}\left(Y_{i}^{*}>C \mid X_{i}\right) .
$$

- So the log-likelihood is given by

$$
\sum_{i=1}^{n} D_{i} \ln \left(f\left(y_{i} \mid x_{i}, \theta\right)\right)+\left(1-D_{i}\right) \ln \left(\int_{C}^{\infty} f\left(y \mid x_{i}, \theta\right) d y\right)
$$

Censoring

- Random censoring:
- Suppose censoring times are random, C_{i}, with distribution $f_{C \mid X}(c \mid x, \theta)$.
- Assume that Y_{i}^{*} and C_{i} are independent conditional on X_{i}.

Censoring

- Random censoring:
- Suppose censoring times are random, C_{i}, with distribution $f_{C \mid X}(c \mid x, \theta)$.
- Assume that Y_{i}^{*} and C_{i} are independent conditional on X_{i}.
- If $d_{i}=1$ then

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=y_{i}, D_{i}=d_{i} \mid X_{i}\right) & =\operatorname{Pr}\left(Y_{i}^{*}=y_{i}, Y_{i}^{*} \leq C_{i} \mid X_{i}\right) \\
& =\operatorname{Pr}\left(Y_{i}^{*}=y_{i}, C_{i} \geq y_{i} \mid X_{i}\right) \\
& =f\left(y_{i} \mid x_{i}, \theta\right) \int_{y_{i}}^{\infty} f_{C}\left(y \mid x_{i}, \theta\right) d y
\end{aligned}
$$

Censoring

- Random censoring:
- Suppose censoring times are random, C_{i}, with distribution $f_{C \mid X}(c \mid x, \theta)$.
- Assume that Y_{i}^{*} and C_{i} are independent conditional on X_{i}.
- If $d_{i}=1$ then

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=y_{i}, D_{i}=d_{i} \mid X_{i}\right) & =\operatorname{Pr}\left(Y_{i}^{*}=y_{i}, Y_{i}^{*} \leq C_{i} \mid X_{i}\right) \\
& =\operatorname{Pr}\left(Y_{i}^{*}=y_{i}, C_{i} \geq y_{i} \mid X_{i}\right) \\
& =f\left(y_{i} \mid x_{i}, \theta\right) \int_{y_{i}}^{\infty} f_{C}\left(y \mid x_{i}, \theta\right) d y
\end{aligned}
$$

- If $d_{i}=0$ then $y_{i}=C_{i}$ and

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=y_{i}, D_{i}=d_{i} \mid X_{i}\right) & =\operatorname{Pr}\left(C_{i}=y_{i}, Y_{i}^{*}>C_{i} \mid X_{i}\right) \\
& =f_{C}\left(y_{i} \mid x_{i}, \theta\right) \int_{y_{i}}^{\infty} f\left(y \mid x_{i}, \theta\right) d y
\end{aligned}
$$

Truncation

- non-random censoring:
- The likelihood should be the distribution of what we observe, conditional on being observed.
- This is usually implicit.

Truncation

- non-random censoring:
- The likelihood should be the distribution of what we observe, conditional on being observed.
- This is usually implicit.
- Here,

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=y_{i} \mid D_{i}=1, x_{i}\right) & =\operatorname{Pr}\left(Y_{i}^{*}=y_{i} \mid Y_{i}^{*} \leq C, x_{i}\right) \\
& =\frac{\operatorname{Pr}\left(Y_{i}^{*}=y_{i}, Y_{i}^{*} \leq C \mid x_{i}\right)}{\operatorname{Pr}\left(Y_{i}^{*} \leq C \mid x_{i}\right)} \\
& =\frac{f\left(y_{i} \mid x_{i}, \theta\right)}{\int_{-\infty}^{C} f\left(y \mid x_{i}, \theta\right) d y}
\end{aligned}
$$

Truncation

- non-random censoring:
- The likelihood should be the distribution of what we observe, conditional on being observed.
- This is usually implicit.
- Here,

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=y_{i} \mid D_{i}=1, x_{i}\right) & =\operatorname{Pr}\left(Y_{i}^{*}=y_{i} \mid Y_{i}^{*} \leq C, x_{i}\right) \\
& =\frac{\operatorname{Pr}\left(Y_{i}^{*}=y_{i}, Y_{i}^{*} \leq C \mid x_{i}\right)}{\operatorname{Pr}\left(Y_{i}^{*} \leq C \mid x_{i}\right)} \\
& =\frac{f\left(y_{i} \mid x_{i}, \theta\right)}{\int_{-\infty}^{C} f\left(y \mid x_{i}, \theta\right) d y}
\end{aligned}
$$

- So the log-likelihood is

$$
\sum_{i=1}^{n} \log \left(f\left(y_{i} \mid x_{i}, \theta\right)\right)-\log \left(\int_{-\infty}^{c} f\left(y \mid x_{i}, \theta\right) d y\right)
$$

Truncation

- random censoring:
- Now we get

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=y_{i} \mid D_{i}=1, x_{i}\right) & =\operatorname{Pr}\left(Y_{i}^{*}=y_{i} \mid Y_{i}^{*} \leq C_{i}, x_{i}\right) \\
& =\frac{\operatorname{Pr}\left(Y_{i}=y_{i}, Y_{i}^{*} \leq C_{i} \mid x_{i}\right)}{\operatorname{Pr}\left(Y_{i}^{*} \leq C_{i} \mid x_{i}\right)} \\
& =\frac{f\left(y_{i} \mid x_{i}, \theta\right)\left(1-F_{C}\left(y_{i} \mid x_{i}, \theta\right)\right)}{\int_{-\infty}^{\infty} f\left(y \mid x_{i}, \theta\right)\left(1-F_{C}\left(y \mid x_{i}, \theta\right)\right) d y}
\end{aligned}
$$

Identification

- An important part of structural modeling: determining model identification
- Just because we can write down a likelihood function does not mean the model is identified.
- Consider the random censoring model:
- suppose we assume instead that $D_{i}=\mathbf{1}\left(Y_{i}^{*} \leq C_{i}+c_{0}\right)$
- we can add a constant to C_{0} and shift the density of C_{i} by the same constant without changing the likelihood function
- so the model is not identified!
- We will give some more examples of this next week.

