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Lecture 4 —Nonparametric and
semiparametric estimation

Economics 8379
George Washington University

Instructor: Prof. Ben Williams
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Nonparametric regression

e Suppose we have a sample, (X, Y;),i=1,...,nwhere Y;
is scalar and X; € RY.
® Two perspectives on nonparametric regression:
e either
® Econometric model: Y; = g(X;) + u; where E(u; | Xi) =0
¢ the function g is an unknown parameter that we want to
estimate
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Nonparametric regression

e Suppose we have a sample, (X, Y;),i=1,...,nwhere Y;
is scalar and X; € RY.
® Two perspectives on nonparametric regression:
® either
® Econometric model: Y; = g(X;) + u; where E(u; | Xi) =0
¢ the function g is an unknown parameter that we want to
estimate
* or
® we want to predict Y;
® the MSE-minimizing predictor of Y; is the CEF, E(Y; | X)
® estimate the CEF to predict Y;
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Two simple versions

e A fully saturated regression model.
* This is not feasible if some values in the support of X; have
only one observation.
* More generally, this leads to predicted values with a high
variance.
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Two simple versions

* Two simple estimators:

* A “histogram” estimator: §(x) = S<'SxS<n

iy Yi(IXi—x|<h)

Semip.
000
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Two simple versions

* Two simple estimators:
* A “histogram” estimator: g(x) = %
® The k-nearest neighbor estimator: §(x) equals the simple

average of the k observations with smallest values of
[ Xi = x.
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Two simple versions

Two simple estimators:
* A “histogram” estimator: §(x) = %
® The k-nearest neighbor estimator: §(x) equals the simple

average of the k observations with smallest values of
[ Xi = x.

These are in a sense equivalent.
But not as you vary x.
And choice of h, k differ.
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Kernel regression

e Suppose Y, = g(X;) + u;and E(u; | Xij) =0
* The kernel regression estimator (Nadaraya-Watson) is

Sk (M50) v
LohK (K52)

where K(u) is a kernel function and his a bandwidth
parameter.

9(x0) =
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Kernel regression

e Suppose Y, = g(X;) + u;and E(u; | Xij) =0
* The kernel regression estimator (Nadaraya-Watson) is

Sk (M50) v
LohK (K52)

where K(u) is a kernel function and his a bandwidth
parameter.
* Example kernel functions:
e uniform: K(u) =1(ju| < 1)
e triangular: K(u) = (1 — Ju)1(Ju| < 1)
® gaussian: K(u) = ¢(u)

9(x0) =
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Different kernel functions

e The choice of kernel function is often not that important.

Uniform kernel Epan kernel Gaussian kernel
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kernel = rectangle, degree = 0, bandwidth

kernel = epanechnikov, degree = 0, bandwid

kernel = gaussian, degree = 0, bandwidth = 36
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Kernel regression

¢ The choice of bandwidth is important.

® too small — high variance
® too large — high bias

Semip.
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Different bandwidths
e Comparison of optimal bandwidth h* with h* /4 and 4h*

Small bw Optimal bw Large bw
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95% Cl — Ipoly smo# ‘ 95% Cl — Ipoly smo4i ‘ 95% Cl — Ipoly smo#th

kernel = epanechnikov, degree = 0, bandwi

kernel = epanechnikov, degree = 0, bandwid

kernel = epanechnikov, degree = 0, bandwidth
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Kernel regression

e Let f denote the density of X;, which we assume for now is

scalar.
e Under some regularity conditions:
i P _ R2 ! f/(X) /" 2
Bias(9(x)) = h= | 9'(x) 0 + 9" (x) u“K(u)du

+0(n "h™ ") + o(h?)
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Kernel regression

e Let f denote the density of X;, which we assume for now is

scalar.
e Under some regularity conditions:
i P _ R2 ! f/(X) /" 2
Bias(9(x)) = h= | 9'(x) 0 + 9" (x) u“K(u)du

+0(n "h™ ") + o(h?)

and

Var(g(x)) =~ 2= [ (K(@)R -+ ofn thY)
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Kernel regression

e Let f denote the density of X;, which we assume for now is

scalar.
e Under some regularity conditions:
i P _ R2 ! f/(X) /" 2
Bias(9(x)) = h= | 9'(x) 0 + 9" (x) u“K(u)du

+0(n "h™ ") + o(h?)

and

Var(g(x)) =~ 2= [ (K(@)R -+ ofn thY)

e The h that balances bias and variance is O(n~1/%).
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Kernel regression

e Asymptotic normality:
Vnh(g(x) - g(x) — Bias(g(x)))

g N (o, F(x)~" Var(u; | X; = x) / K(u)zdu)
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Kernel regression

e Asymptotic normality:
Vnh(g(x) - g(x) — Bias(g(x)))
g N (o, F(x)~" Var(u; | X; = x) / K(u)zdu>

e if v/nhh? — 0 then v/nh(g(x) — g(x)) has the same asy.
dist.

® some undersmoothing is necessary
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Kernel regression

e Some important assumptions (see, e.g., Pagan and Ullah):

g and f are twice cts diff’ble near x

[ K(u)du=1, [uK(u)du =0, [u?K(u)du < oo
h— 0and nh — oo

X is an interior point, f’ is cts. and bounded near x
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Kernel regression

e Bandwidth choice:

e Optimal bandwidth minimizes the MISE:

JE((a(x) = g(x))?)f(x)dx
® plug-in
® cross-validation

e Trimming

Semip.
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Kernel regression

¢ (Pointwise) Confidence intervals:

e Estimate asy. variance.
e Estimate, undersmooth, or ignore the bias.
® Then the construction is typical.

e Uniform confidence intervals (Hardle, 1990)



Nonparam. reg.
00000000000080000000000000

Kernel regression

¢ |n Stata: 1poly yvar xvar, degree (0)

* what this name/syntax means will be apparent shortly...

® default kernel is Epanechnikov; specify other with
kernel ()

* default bandwidth is the plug-in estimator; specify other
with bw)

® use at () to specify support points

® ci provides confidence intervals; pointwise, ignores the
bias

® trimming can be done manually...
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Multivariate kernel regression

Semip.

* Suppose that X; € RY.
¢ Under sufficient regularity conditions,

* Bias(g(x) ~ S5, (a0 + w(x)) J K (u)du
 Var(g(x) ~ 8D (1 (K(w)) o)

e optimal convergence rate depends on d — curse of
dimensionality.
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Kernel regression

® Recommendations:

e Standardize regressors first.
* Take care with observations in the tails, or on a boundary.
e |f inference is important in your application
® Do not ignore the bias.
® Choose the bandwidth carefully (try various different
methods).
® Remember the difference between pointwise and uniform
Cls.

e If d > 2, try to think of plausible economic restrictions to
impose.
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Local polynomial regression

e The NW kernel regression estimator can be viewed as a
“locally constant” regression.

¢ A local linear regression minimizes a weighted sum of
squares

"1 Xi — X
ZEK </ho> (Vi — a0 — a1 (Xi — x0))?
i=1

e This can be extended by replacing summand with
(Yi—ao—a1(Xi— xo) — ... — ak(Xi — x0)")2.
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Comparison
e Comparison of different order local polynomials at fixed

bandwidth:

Kernel Local linear Local quadratic
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Comparison

e |etting Stata choose the optimal bandwidth:

Kernel Local linear Local quadratic
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kernel = epanechnikov, degree = 0, bandwi

kernel = epanechnikov, degree = 1, bandwid

kernel = epanechnikov, degree = 2, bandwidth

Semip.
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Local polynomial regression

* The asymptotic variance of the local linear regression
(LLR) estimator is the same as for the NW estimator.

e The bias is 129" (x) [ u*K(u)du.
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Other nonparametric regression estimators

* A series estimator (or other sieve estimators) approximates
9(xo) globally using polynomials (or other basis functions).
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Section 3 of Heckman, Lochner, Todd (2006)

mean log annual wage and salary income
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Section 3 of Heckman, Lochner, Todd (2006)

mean log annual wage and salary income
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Section 3 of Heckman, Lochner, Todd (2006)

mean log annual wage and salary income

mean log annual wage and salary income
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1940 Census, White Males

1940 Census, Black Males

mean log annual wage and salary income.
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Section 3 of Heckman, Lochner, Todd (2006)

¢ An implication of the economic model is that
E(yi | xi,si = s1) — E(yi | xi, si = s2) does not vary with x;.
e To test this:

® estimate g(x, s) for various values of x, s
¢ form a test statistic and use the asymptotic variance
derived previously
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Section 3 of Heckman, Lochner, Todd (2006)

¢ An implication of the economic model is that
E(yi | xi,si = s1) — E(y;i | x;, si = s2) does not vary with x;.
e Two issues that they address:

* Cov (g(x1,s1),9(x2,52))?
¢ what formula to use for asymptotic variance?
® they use a method that mimics the OLS standard error
formula, instead of the plug-in formula.
e Kernel? (quartic kernel)
® bandwidth choice?
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Section 3 of Heckman, Lochner, Todd (2006)

¢ An implication of the economic model is that
E(yi | xi,si = s1) — E(y;i | x;, si = s2) does not vary with x;.
e Two issues that they address:
® Cov(9(x1,51),9(x2,82))?
¢ what formula to use for asymptotic variance?
® they use a method that mimics the OLS standard error
formula, instead of the plug-in formula.
e Kernel? (quartic kernel)
® bandwidth choice? (“The bandwidth parameter is equal to 5
years. Estimates are not very sensitive to changes in the
bandwidth parameter in the range of 3-10 years.”)
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Section 3 of Heckman, Lochner, Todd (2006)

Table 1
Tests of parallelism in log earnings experience profiles for men

Sample Experience Estimated difference between college and high school log earnings at

level different experience levels
1940 1950 1960 1970 1980 1990

Whites 10 0.54 0.30 0.46 0.41 0.37 0.59
20 0.40 0.40 0.43 0.49 0.45 0.54
30 0.54 0.27 0.46 0.48 0.43 0.52
40 0.58 0.21 0.50 0.45 0.27 0.30
p-value 0.32 0.70 <0.001 <0.001 <0.001 <0.001

Blacks 10 0.20 0.58 0.48 0.38 0.70 0.77
20 0.38 0.05 0.25 0.22 0.48 0.69
30 —0.11 0.24 0.08 0.33 0.36 0.53
40 —0.20 0.00 0.73 0.26 0.22 —0.04
p-value 0.46 0.55 0.58 0.91 <0.001 <0.001

Notes: Data taken from 1940-90 Decennial Censuses without adjustment for inflation. Because there are very
few blacks in the 1940 and 1950 samples with college degrees, especially at higher experience levels, the test
results for blacks in those years refer to a test of the difference between earnings for high school graduates
and persons with 8 years of education. See Appendix B for data description. See Appendix C for the formulae
used for the test statistics.

Semip.
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Semiparametric models

¢ A semiparametric model has a parametric component (3)
and a nonparametric component (g).
e Examples:
® A partially linear regression model: Y; = 8'Xy; + g(Xzi) + u;.
® A linear regression model, Y; = ' X; + u;, with unknown
heteroskedasticity, g(X;) = o2(X;).
® Average derivative: Y;=g(X))+u, 8 =E (%)
® Matching estimators
* Newey (1990) is a good source for an introduction to
technical conditions in semiparametric estimation.
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Semiparametric models

¢ Advantages of some semiparametric estimators:

e Often they will converge at rate v/n to a normal distribution
(just like a parametric estimator).

e If this happens, it is also often the case that the asymptotic
distribution does not depend on what estimator is used for
the nonparametric component.

® In very nice cases, the asymptotic distribution is the same
as if g had been known. (adaptive)

® In some cases we can derive a semiparametric efficiency
bound.
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Semiparametric models

e |ssues with semiparametric estimators:

® The asymptotic arguments can be somewhat fragile.

* Trimming is often necessary.

e Can still have sensitivity to bandwidth choice, kernel choice,
etc. in practice.

® |tis not always clear if the first stage estimator is good
enough.



