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Nonparametric regression

• Suppose we have a sample, (Xi ,Yi), i = 1, . . . ,n where Yi
is scalar and Xi ∈ Rd .
• Two perspectives on nonparametric regression:

• either
• Econometric model: Yi = g(Xi) + ui where E(ui | Xi) = 0
• the function g is an unknown parameter that we want to

estimate

• or
• we want to predict Yi
• the MSE-minimizing predictor of Yi is the CEF, E(Yi | Xi)
• estimate the CEF to predict Yi
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Two simple versions

• A fully saturated regression model.
• This is not feasible if some values in the support of Xi have

only one observation.
• More generally, this leads to predicted values with a high

variance.
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Two simple versions

• Two simple estimators:
• A “histogram” estimator: ĝ(x) =

∑n
i=1 Yi 1(|Xi−x|≤h)∑n

i=1 1(|Xi−x|≤h)

• The k-nearest neighbor estimator: ĝ(x) equals the simple
average of the k observations with smallest values of
|Xi − x |.

• These are in a sense equivalent.
• But not as you vary x .
• And choice of h, k differ.
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Kernel regression

• Suppose Yi = g(Xi) + ui and E(ui | Xi) = 0
• The kernel regression estimator (Nadaraya-Watson) is

ĝ(x0) =

∑n
i=1

1
h K
(

Xi−x0
h

)
Yi∑n

i=1
1
h K
(

Xi−x0
h

)
where K (u) is a kernel function and h is a bandwidth
parameter.

• Example kernel functions:
• uniform: K (u) = 1(|u| ≤ 1)
• triangular: K (u) = (1− |u|)1(|u| ≤ 1)
• gaussian: K (u) = φ(u)



Nonparam. reg. Semip.

Kernel regression

• Suppose Yi = g(Xi) + ui and E(ui | Xi) = 0
• The kernel regression estimator (Nadaraya-Watson) is

ĝ(x0) =

∑n
i=1

1
h K
(

Xi−x0
h

)
Yi∑n

i=1
1
h K
(

Xi−x0
h

)
where K (u) is a kernel function and h is a bandwidth
parameter.

• Example kernel functions:
• uniform: K (u) = 1(|u| ≤ 1)
• triangular: K (u) = (1− |u|)1(|u| ≤ 1)
• gaussian: K (u) = φ(u)



Nonparam. reg. Semip.

Different kernel functions
• The choice of kernel function is often not that important.

7
8

9
10

11
ln

ea
rn

s

0 1000 2000 3000 4000
ANN WORK HRS

95% CI lpoly smooth
kernel = rectangle, degree = 0, bandwidth = 64.27, pwidth = 96.4

Uniform kernel

7
8

9
10

11

0 1000 2000 3000 4000
ANN WORK HRS

95% CI lpoly smooth
kernel = epanechnikov, degree = 0, bandwidth = 65.02, pwidth = 97.53

Epan kernel

7
8

9
10

11
0 1000 2000 3000 4000

ANN WORK HRS

95% CI lpoly smooth
kernel = gaussian, degree = 0, bandwidth = 36.47, pwidth = 54.71

Gaussian kernel



Nonparam. reg. Semip.

Kernel regression

• The choice of bandwidth is important.
• too small→ high variance
• too large→ high bias
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Different bandwidths
• Comparison of optimal bandwidth h∗ with h∗/4 and 4h∗
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Kernel regression

• Let f denote the density of Xi , which we assume for now is
scalar.
• Under some regularity conditions:

Bias(ĝ(x)) = h2
(

g′(x)
f ′(x)
f (x)

+ g′′(x)
)∫

u2K (u)du

+ O(n−1h−1) + o(h2)

and

Var(ĝ(x)) =
Var(ui | Xi = x)

nhf (x)

∫
(K (u))2 du + o(n−1h−1)

• The h that balances bias and variance is O(n−1/5).
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Kernel regression

• Asymptotic normality:
√

nh(ĝ(x)− g(x)− Bias(ĝ(x)))

→d N
(

0, f (x)−1Var(ui | Xi = x)
∫

K (u)2du
)

• if
√

nhh2 → 0 then
√

nh(ĝ(x)− g(x)) has the same asy.
dist.
• some undersmoothing is necessary
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Kernel regression

• Some important assumptions (see, e.g., Pagan and Ullah):

• g and f are twice cts diff’ble near x
• ∫ K (u)du = 1,

∫
uK (u)du = 0,

∫
u2K (u)du <∞

• h→ 0 and nh→∞
• x is an interior point, f ′′ is cts. and bounded near x
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Kernel regression

• Bandwidth choice:
• Optimal bandwidth minimizes the MISE:∫

E((ĝ(x)− g(x))2)f (x)dx
• plug-in
• cross-validation

• Trimming
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Kernel regression

• (Pointwise) Confidence intervals:
• Estimate asy. variance.
• Estimate, undersmooth, or ignore the bias.
• Then the construction is typical.

• Uniform confidence intervals (Hardle, 1990)
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Kernel regression

• In Stata: lpoly yvar xvar, degree(0)
• what this name/syntax means will be apparent shortly...
• default kernel is Epanechnikov; specify other with
kernel()

• default bandwidth is the plug-in estimator; specify other
with bw)

• use at() to specify support points
• ci provides confidence intervals; pointwise, ignores the

bias
• trimming can be done manually...



Nonparam. reg. Semip.

Multivariate kernel regression

• Suppose that Xi ∈ Rd .
• Under sufficient regularity conditions,

• Bias(ĝ(x)) ≈ h2∑d
k=1

(
gk (x)

fk (x)
f (x) + gkk (x)

) ∫
u2K (u)du

• Var(ĝ(x)) ≈ Var(ui |Xi=x)
nhd f (x)

(∫
(K (u))2 du

)d

• optimal convergence rate depends on d – curse of
dimensionality.
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Kernel regression

• Recommendations:
• Standardize regressors first.
• Take care with observations in the tails, or on a boundary.
• If inference is important in your application

• Do not ignore the bias.
• Choose the bandwidth carefully (try various different

methods).
• Remember the difference between pointwise and uniform

CIs.
• If d > 2, try to think of plausible economic restrictions to

impose.
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Local polynomial regression

• The NW kernel regression estimator can be viewed as a
“locally constant” regression.
• A local linear regression minimizes a weighted sum of

squares

n∑
i=1

1
h

K
(

Xi − x0

h

)
(Yi − a0 − a1(Xi − x0))

2

.
• This can be extended by replacing summand with
(Yi − a0 − a1(Xi − x0)− . . .− ak (Xi − x0)

k )2.
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Comparison
• Comparison of different order local polynomials at fixed

bandwidth:
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Comparison
• Letting Stata choose the optimal bandwidth:
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Local polynomial regression

• The asymptotic variance of the local linear regression
(LLR) estimator is the same as for the NW estimator.
• The bias is 1

2h2g′′(x)
∫

u2K (u)du.
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Other nonparametric regression estimators

• A series estimator (or other sieve estimators) approximates
g(x0) globally using polynomials (or other basis functions).
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Section 3 of Heckman, Lochner, Todd (2006)Ch. 7: Earnings Functions, Rates of Return and Treatment Effects 321

Figure 1a. Experience–earnings profiles, 1940–1960.
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Figure 1b. Experience–earnings profiles, 1970–1990.
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Section 3 of Heckman, Lochner, Todd (2006)Ch. 7: Earnings Functions, Rates of Return and Treatment Effects 323

Figure 2. Age–earnings profiles, 1940, 1960, 1980.
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Section 3 of Heckman, Lochner, Todd (2006)

• An implication of the economic model is that
E(yi | xi , si = s1)− E(yi | xi , si = s2) does not vary with xi .
• To test this:

• estimate ĝ(x , s) for various values of x , s
• form a test statistic and use the asymptotic variance

derived previously
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Section 3 of Heckman, Lochner, Todd (2006)

• An implication of the economic model is that
E(yi | xi , si = s1)− E(yi | xi , si = s2) does not vary with xi .
• Two issues that they address:

• Cov (ĝ(x1, s1), ĝ(x2, s2))?
• what formula to use for asymptotic variance?

• they use a method that mimics the OLS standard error
formula, instead of the plug-in formula.

• Kernel? (quartic kernel)
• bandwidth choice?

(“The bandwidth parameter is equal to 5
years. Estimates are not very sensitive to changes in the
bandwidth parameter in the range of 3-10 years.”)
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Table 1
Tests of parallelism in log earnings experience profiles for men

Sample Experience
level

Estimated difference between college and high school log earnings at
different experience levels

1940 1950 1960 1970 1980 1990

Whites 10 0.54 0.30 0.46 0.41 0.37 0.59
20 0.40 0.40 0.43 0.49 0.45 0.54
30 0.54 0.27 0.46 0.48 0.43 0.52
40 0.58 0.21 0.50 0.45 0.27 0.30
p-value 0.32 0.70 <0.001 <0.001 <0.001 <0.001

Blacks 10 0.20 0.58 0.48 0.38 0.70 0.77
20 0.38 0.05 0.25 0.22 0.48 0.69
30 −0.11 0.24 0.08 0.33 0.36 0.53
40 −0.20 0.00 0.73 0.26 0.22 −0.04
p-value 0.46 0.55 0.58 0.91 <0.001 <0.001

Notes: Data taken from 1940–90 Decennial Censuses without adjustment for inflation. Because there are very
few blacks in the 1940 and 1950 samples with college degrees, especially at higher experience levels, the test
results for blacks in those years refer to a test of the difference between earnings for high school graduates
and persons with 8 years of education. See Appendix B for data description. See Appendix C for the formulae
used for the test statistics.

Figure 3 examines the support for implication (iii) – a U-shaped variance in earnings –
for three different schooling completion levels: eighth grade, twelfth grade, and college
(16 years of school). For the 1940 Census year, the variance of log-earnings over the
life cycle is relatively flat for whites. It is similarly flat in 1950, with the exception of
increasing variance at the tails. However, data for black and white men from the 1960–
1990 Censuses clearly exhibit the U-shaped pattern predicted by Mincer’s accounting-
identity model. The evidence in support of predictions (ii) and (iii) gives analysts greater
confidence in using the Mincer model to study earnings functions and rates of return to
schooling, while failure of prediction (i) in recent decades raises a note of caution.20

A major limitation of cross sectional analyses of variances is that they are silent about
which components are predictable by the agent and which components represent true
uncertainty, which is important in assessing the determinants of schooling decisions.
We discuss this issue in Section 10.

Table 2 reports standard cross-section regression estimates of the Mincer return to
schooling for all Census years derived from earnings specification (1). The estimates
indicate an ex post average rate of return to schooling of around 10–13% for white men
and 9–15% for black men over the 1940–1990 period. While estimated coefficients on
schooling tend to be lower for blacks than whites in the early decades, they are higher

20 The U-shaped profile of the variance of earnings argues against the Rutherford (1955) model of earnings
as revived by Atkeson and Lucas (1992).
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Semiparametric models

• A semiparametric model has a parametric component (β)
and a nonparametric component (g).
• Examples:

• A partially linear regression model: Yi = β′X1i + g(X2i) + ui .
• A linear regression model, Yi = β′Xi + ui , with unknown

heteroskedasticity, g(Xi) = σ2(Xi).
• Average derivative: Yi = g(Xi) + ui , β = E

(
∂g(Xi )
∂Xi

)
• Matching estimators

• Newey (1990) is a good source for an introduction to
technical conditions in semiparametric estimation.
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Semiparametric models

• Advantages of some semiparametric estimators:
• Often they will converge at rate

√
n to a normal distribution

(just like a parametric estimator).
• If this happens, it is also often the case that the asymptotic

distribution does not depend on what estimator is used for
the nonparametric component.

• In very nice cases, the asymptotic distribution is the same
as if g had been known. (adaptive)

• In some cases we can derive a semiparametric efficiency
bound.
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Semiparametric models

• Issues with semiparametric estimators:
• The asymptotic arguments can be somewhat fragile.
• Trimming is often necessary.
• Can still have sensitivity to bandwidth choice, kernel choice,

etc. in practice.
• It is not always clear if the first stage estimator is good

enough.


