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Review

Identification under random assignment:
• If Di is randomly assigned then

E(Yi | Di = 1)− E(Yi | Di = 0) = E(Y1i − Y0i )

• this is because, more generally randomization implies that
(Y0i ,Y1i ) ⊥⊥ Di

• note that randomization also implies that ATE = TT = TUT
but not that Y1i − Y0i = ATE
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Review

Estimation under random assignment:
• analogy principle
• other methods to improve efficiency
• regression adjustment can introduce bias in finite samples
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Preview

Today’s lecture:
• identification based on conditional independence:

(Y0i ,Y1i ) ⊥⊥ Di | Xi

• what does OLS estimate under this assumption and other
useful results about OLS

• matching estimators
• Campolieti, Gunderson, and Smith (2014)
• next week:

• what to include in Xi
• sensitivity analysis
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Conditional independence

• The conditional independence assumption:
(M-1) (Y0i ,Y1i ) ⊥⊥ Di | Xi

• Selection on observables
• We will explore what variables should and shouldn’t be

included in Xi later.
• weaker sufficient condition:
(M-1)’ E(Y1 | D,X ) = E(Y1 | X ) and E(Y0 | D,X ) = E(Y0 | X )

(conditional mean independence)
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Common support

• Identification also requires an auxiliary assumption.
• The common support assumption:
(M-2) 0 < Pr(D = 1 | X = x) < 1 for each x ∈ support(X )

• Notation:
• P(x) := Pr(D = 1 | X = x) is the propensity score
• The support of a random variable is the set of values where

its density (or pmf) is positive.
• Let Sd = Supp(X | D = d) and let S10 = S1 ∩ S0.

• Under (M-2), S1 = S0 = S10.
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Identification of ATE

• First, (M-1)’ implies that
E(Y | D = d ,X ) = E(Yd | D = d ,X ) = E(Yd | X ).
• Therefore,

E (E(Y | D = 1,X ))− E (E(Y | D = 0,X ))

= E (E(Y1 − Y0 | X ))

= E(Y1 − Y0)
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Identification of ATE

• Where does (M-2) come into play?

• E(Yd | D = d ,X = x) is only defined for x ∈ Sd
• Therefore, E(Yd ) = E (E(Y | D = d ,X )) only holds if

Sd = Supp(X ).
• We need both S1 = Supp(X ) and S0 = Supp(X )–

equivalent to (M-2)
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Identification of ATT

• The treatment on the treated is identified under weaker
assumptions.
• The derivation:

E(Y | D = 1)− E (E(Y | D = 0,X ) | D = 1)

= E(Y1 | D = 1)− E (E(Y0 | D = 1,X ) | D = 1)

= E(Y1 − Y0 | D = 1)

• So S0 can be “bigger” but not “smaller”.
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Common support

• pictures...
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Identification without common support

• Let C = S1 ∩ S0 be the common support.
• If support conditions don’t hold we can always identify

E(Y1 − Y0 | X ∈ C)

under (M-1)’ alone.
• Bounds on the treatment effects outside of C can be used

to get bounds on the ATE or ATT.



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)

Consider the linear regression model:

yi = β′Xi + ei

The OLS estimator of β minimizes the sum of squared
residuals,

n∑
i=1

(yi − β′Xi)
2

The solution is

β̂ =

(
n∑

i=1

XiX ′i

)−1 n∑
i=1

Xiyi
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If the data constitute a random sample and E(eiXi) = 0
then β̂ →p β and has an asymptotic normal distribution.

• If we define β = E(XiX ′i )−1E(Xiyi ) and ei = yi − β′Xi then
E(eiXi ) = 0 is automatically satisfied.

• In this case, β′Xi provides minimum MSE linear
approximation to the CEF, E(Yi | Xi ).

If E(ei | Xi) = 0 then β̂ is unbiased.
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Under the interpretation of the regression equation as the
minimum MSE linear approximation to the CEF,
• OLS will typically be biased relative to β in finite samples.
• Heteroskedasticity is natural:

• =⇒ always use robust standard errors
• but weighting changes the estimand



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)

Frisch-Waugh-Lovell (FWL) theorem

• For each k ,

βk =
Cov(Yi , ε

(k)
i )

Var(ε
(k)
i )

where ε(k)i is the residual from regression Xik on the rest of
Xi .

• What does this imply about a regression where Xi2, . . . ,XiK
are, for example, regional dummy variables?

• Can replace Yi with Ỹ k
i (residual from regression Yi on

Xi2, . . . ,XiK ).
• This sample analogue also holds.
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Omitted variable bias

• Suppose Wi denote some other variables excluded from
the vector Xi .
• Let ˆbeta

s
1 denote the coefficients on Xi in a regression that

excludes.
• Let β̂`1 and β̂`2 denote the coefficients on Xi and Wi ,

respectively, when Wi is included.
• Then

β̂s
1 = β̂`1 +

(
(X ′X )−1X ′W

)
β̂`2

• “short equals long plus the effect of the omitted times the
regression of omitted on included”
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Fully saturated regression model

• boop
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Regression and causality

• Consider a regression of Yi on Di (binary) and covariates
Xi .
• If Y1i − Y0i = δ and E(Y0i | Xi ,Di ) = γ′Xi then δ is

estimated consistently by OLS.

• More generally, if Di is continuous, Ydi = α + δDi + ηi , and
E(ηi | Xi ,Di ) = γ′Xi , then the OLS coefficient estimate on
Di is consistent for δ.

• These results are most interesting when Xi is discrete but
still assumes no heterogeneity.
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Regression and causality

• Suppose that xi is a vector if discrete variables and Xi is a
vector of indicators that fully saturates the model in xi – but
not interactions with Di .
• example: xi is years of schooling and gender and Xi is a

dummy variable for each year of schooling, a dummy
variable for gender, and an interaction between gender and
each schooling level

• In this case, if Y1,Y0 are independent of Di conditional on
xi then E(Y0i | Xi ,Di) = γ′Xi (or E(ηi | Xi ,Di) = γ′Xi ) is
trivially satisfied so the only other assumption is that of no
heterogeneity in treatment effects (and linearity in Di ).
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Regression and causality

• If Di is randomly assigned then (M-1) is satisfied for any X
that is measured at baseline.
• So what can we say about OLS in this case?

• The no heterogeneity and linearity assumptions don’t cause
bias asymptotically because Di is independent of Xi .

• But controlling for Xi can introduce finite sample bias.
• See Freedman (2008).
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Regression and causality

• We will stick with the binary Di case now.
• Define δx = E(Yi | Di = 1,Xi = x)− E(Yi | Di = 0,Xi = x).

• Under (M-1)’,

δx = E(Y1i − Y0i | Xi = x)
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Regression and causality

• Suppose the model is saturated in Xi but we now relax the
no heterogeneity assumption.

• Then

δR =
∑

x

δx

(
p(Xi)(1− p(Xi))Pr(Xi = x)∑
x p(Xi)(1− p(Xi))Pr(Xi = x)

)
where p(Xi) := Pr(Di = 1 | Xi = x)

• When Pr(Di = 1 | Xi = x) equals 0 or 1, the weight is 0.
• This weighted average is different from the ATE, TT, and

TUT, which can all also be seen as weighted averages of
δx with different weights.
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Why matching?

• Two reasons:
1. The OLS weights are different from the ATE or ATT weights.

This leads to different results if
(a) P(x) := Pr(D = 1 | X = x) varies in x
(b) and δx varies in x

2. Extrapolation:
• If the model is not fully saturated in X then OLS extrapolates

across observations (gives weight outside the common
support).

• Matching methods in a more controlled way.
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Why matching?
• Consider the following example from Ho et al. (2007):

4.3 Model Dependence in Observational Data

We first illustrate the problem of sensitivity to model specification and then give a more
formal definition of model dependence. The left graph of Figure 1 plots artificial data for
outcome Yi on the vertical axis and a pretreatment covariate Xi on the horizontal axis (we
discuss the right graph in Section 5.2). This data set was designed to illustrate the problem;
in real examples, aspects of the problem we portray here often appear, but they may be
more difficult to see given the simultaneous presence of other methodological problems.
In addition, although a good data analyst could easily identify outliers in this one-
dimensional case, doing so is harder in the usual situation with many covariates. In this
figure, each data point is plotted as a ‘‘T’’ for treated units (Ti 5 1) and ‘‘C’’ for control
units (Ti 5 0). We then fit two regressions to these data. The first is a linear regression of
Yi on a constant, Ti, and Xi: E[Yi | Ti, Xi] 5 a þ Tib þ Xic. The fitted values for this
regression are portrayed in two parallel solid lines, the dark solid line for the treated group,
E[Yi | Ti 5 1, Xi]5 aþ bþ Xic, and the gray solid line for the controls, E[Yi | Ti 5 0, Xi]5
a þ Xic. The positive vertical distance between the two straight lines is this parametric
model’s causal effect estimate.

Model dependence is easy to see by also fitting a quadratic model to the same data,
which merely involves adding an X2

i term to the original linear regression. Fitted values for
the quadratic regression appear as dashed curves in the same left graph, again gray for the
controls and solid black for the treated. Clearly, these fit the same data markedly differ-
ently from the original regression. Not only is the overall shape completely different, but

Fig. 1 Model sensitivity of ATE estimates for imbalanced raw and balanced matched data. This
figure presents an artificial data set of treated units represented by ‘‘T’’ and control units represented
by ‘‘C.’’ The vertical axis plots Yi and the horizontal axis plots Xi. The panels depict estimates of the
ATE for a linear and quadratic specification, represented by the difference between parallel lines and
parabolas, respectively. Dark lines are fitted to the treated points and gray to the controls. In the raw
data, plotted in the left panel, some of the control units are far outside the range of the treated units,
and these outlying control units are influential in the parametric models. In the matched data, plotted
in the right panel, treated units are matched with control units that are close in Xi (gray units are
discarded), and as a result treatment effect estimates are similar regardless of model specification.
The two linear and two quadratic lines also appear on the right graph (on top of one another),
truncated to the location of the matched data.

210 Daniel E. Ho et al.
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Exact matching

• Suppose Xi is discrete.
• We can estimate δx for each value of x .
• The ATE, for example, can be estimated simply as

n−1∑n
i=1 δ̂Xi• The ATT or other treatment effects can be estimates by

average the δx ’s over subsamples.
• This is what Angrist (1998) does (Table 3.3.1 in MHE)

• Not feasible if there are too many “cells”.
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• If Xi is not discrete.
• Discretize Xi .
• Then do exact matching.
• Todd (2006) calls this stratified or interval matching.
• One version of this, called coarsened exact matching

(CEM), has gained popularity lately.
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Nearest neighbor

• One-to-one matching:
• For each treated observation i choose the control

observation j such that d(Xi ,Xj ) is minimized.
• Various different metrics can be used for d (Euclidean,

Mahalanobis, etc.)
• tie breaker necessary if Xi is discrete

• k -nearest neighbor matching
• Choose the control observations that have the k smallest

values of d(Xi ,Xj ).
• This does not avoid the possibility that a tie-breaker is

needed.
• Increases bias but reduces variance.
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A class of matching estimators

• Let Id = {i : Di = d} and let nd = |Id | for each d = 0,1.
• A class of matching estimators for the TT:

∆̂TT =
1
n1

∑
i∈I1

Yi −
∑
j∈I0

wi,jYj


• The weights should be calculated so that

∑
j∈I0

wi,jYj is a
good estimate of E(Yi | Di = 0,Xi ).

• in other words, higher weights should be assigned to j with
Xj close to Xi
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A class of matching estimators

• The estimator can be viewed as follows:
• First a new control sample is created by finding matches for

each treatment observation.
• The treatment and new control are “balanced”.
• Then you take a difference in means – do what you would

normally do when treatment is randomized.
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Nonparametric regression-based matching

• Recall that

TT = E(Y | D = 1)−
∫

E(Y | D = 0,X = x)fX (x | D = 1)dx

• Therefore, we can use a nonparametric estimate of
g0(x) := E(Y | D = 0,X = x) to calculate

∆̂TT =
1
n1

∑
i∈I1

(Yi − ĝ0(Xi))

• ĝ0(x) can be a kernel regression or local polynomial
regression estimator, for example.
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Example from Ho et al. (2007)

4.3 Model Dependence in Observational Data

We first illustrate the problem of sensitivity to model specification and then give a more
formal definition of model dependence. The left graph of Figure 1 plots artificial data for
outcome Yi on the vertical axis and a pretreatment covariate Xi on the horizontal axis (we
discuss the right graph in Section 5.2). This data set was designed to illustrate the problem;
in real examples, aspects of the problem we portray here often appear, but they may be
more difficult to see given the simultaneous presence of other methodological problems.
In addition, although a good data analyst could easily identify outliers in this one-
dimensional case, doing so is harder in the usual situation with many covariates. In this
figure, each data point is plotted as a ‘‘T’’ for treated units (Ti 5 1) and ‘‘C’’ for control
units (Ti 5 0). We then fit two regressions to these data. The first is a linear regression of
Yi on a constant, Ti, and Xi: E[Yi | Ti, Xi] 5 a þ Tib þ Xic. The fitted values for this
regression are portrayed in two parallel solid lines, the dark solid line for the treated group,
E[Yi | Ti 5 1, Xi]5 aþ bþ Xic, and the gray solid line for the controls, E[Yi | Ti 5 0, Xi]5
a þ Xic. The positive vertical distance between the two straight lines is this parametric
model’s causal effect estimate.

Model dependence is easy to see by also fitting a quadratic model to the same data,
which merely involves adding an X2

i term to the original linear regression. Fitted values for
the quadratic regression appear as dashed curves in the same left graph, again gray for the
controls and solid black for the treated. Clearly, these fit the same data markedly differ-
ently from the original regression. Not only is the overall shape completely different, but

Fig. 1 Model sensitivity of ATE estimates for imbalanced raw and balanced matched data. This
figure presents an artificial data set of treated units represented by ‘‘T’’ and control units represented
by ‘‘C.’’ The vertical axis plots Yi and the horizontal axis plots Xi. The panels depict estimates of the
ATE for a linear and quadratic specification, represented by the difference between parallel lines and
parabolas, respectively. Dark lines are fitted to the treated points and gray to the controls. In the raw
data, plotted in the left panel, some of the control units are far outside the range of the treated units,
and these outlying control units are influential in the parametric models. In the matched data, plotted
in the right panel, treated units are matched with control units that are close in Xi (gray units are
discarded), and as a result treatment effect estimates are similar regardless of model specification.
The two linear and two quadratic lines also appear on the right graph (on top of one another),
truncated to the location of the matched data.
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Other treatment effects
• Also, by (M-1) and (M-2),

TUT =

∫
E(Y | D = 1,X = x)fX (x | D = 0)dx − E(Y | D = 0)

ATE =

∫
E(Y | D = 1,X = x)fX (x)dx −

∫
E(Y | D = 0,X = x)fX (x)dx

• We can, for example, use nonparametric estimates of g0
and g1(x) := E(Y | D = 1,X = x),

∆̂TUT =
1
n0

∑
i∈I0

(ĝ1(Xi)− Yi)

∆̂ATE =
1
n

∑
i∈I1∪I0

(ĝ1(Xi)− ĝ0(Xi))

• It’s straightforward to estimate things like
E(Y1 − Y0 | X1 = x) as well.
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• It’s straightforward to estimate things like
E(Y1 − Y0 | X1 = x) as well.



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)

Propensity score

• The propensity score –

P(x) = Pr(D = 1 | X = x)

• under the conditional independence assumption
(Y1,Y0) ⊥⊥ D | X ,

E(Yd | D,P(X )) = E(Yd | P(X ))

• first shown by Rosenbaum and Rubin (1983)
• match on P(X )!

• this reduces the complexity of the estimation problem ...
• if a functional form for P(X ) is known
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Propensity score matching

1. Estimate the propensity score P(x) through a logit, probit,
semiparametric or nonparametric method.

2. Create Pi = P(Xi) for each observation i
3. Use any of the matching estimators above, replacing Xi

with Pi
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Some theoretical results

• Kernel-based matching on X
• if the bias in the first stage is small enough, we get

√
n

convergence and asymptotic normality with variance

Veff = E
(

Var(Y1 | X )

P(X )
+

Var(Y0 | X )

1− P(X )

)
+Var (g1(X )− g0(X ))

• this is the semiparametric efficiency bound
• √n convergence and asymptotic normality – this means that

for large samples it performs as well as a parametric method

• however, the larger the dimension of X , the harder it is to
reduce the first stage bias – curse of dimensionality
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Some theoretical results

• Is use of the propensity score a solution to the curse of
dimensionality?
• case 1: the propensity score is known

• the first stage bias will be easier to manage because of the
dimension reduction

• but it turns out that the asymptotic variance is larger!
• Rothe (2016) partially resolves this “propensity score

paradox”: a modified estimator will obtain the efficiency
bound and require weaker regularity conditions



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)

Some theoretical results

• Is use of the propensity score a solution to the curse of
dimensionality?
• case 2: the propensity score is estimated parametrically

• the specification can be logit or probit, for example
• if the specification is the right one then the efficiency bound

is attained
• but generally the propensity score is misspecified
• can have better finite sample performance
• no curse of dimensionality
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Some theoretical results

• Is use of the propensity score a solution to the curse of
dimensionality?
• case 3: the propensity score is estimated nonparametrically

• attains the efficiency bound
• has two nuisance parameters – asymptotics require some

strong regularity conditions
• curse of dimensionality returns!
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Common support

• If (M-2) does not hold, we need to restrict the sample to the
common support S10:

E(E(Y1 − Y0 | X ) | D = 1,X ∈ S10)

• Checking/enforcing
• In the matching on X context, it is difficult to check for

common support because X is high dimensional
• King and Zeng (2007) – convex hull condition
• a conservative approach
• in some cases the convex hull is empty!
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Common support

• Alternatively, trim observations where P(Xi) is near 0 or 1.
• Smith and Todd (2005) suggest following the procedure:

1. estimate f̂P(X)(p | D = 1) and f̂P(X)(p | D = 0)

2. remove observations where f̂P(X)(P(Xi ) | D = d) = 0 for
d = 0 or d = 1

3. find a cutoff cq so that removing those with
f̂P(X)(P(Xi ) | D = 0) ≤ cq or f̂P(X)(P(Xi ) | D = 1) ≤ cq
removes q percent of the remaining sample (1%, 2%, or
5%, in practice)

• If you don’t do this, you will extrapolate out of sample!
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Balance tests

• The covariates should have the same distribution in the
treatment and the matched samples.
• There are various statistics – difference in means is the

simplest.
• The standardized difference is also common – for each k ,

SDIFF (Xk ) = 100
1
n1

∑
i∈I1

Xki −
∑

j∈I0
wijXkj√

1
2Vari∈I1(Xki) + 1

2Vari∈I0(Xki)

• No real guidance for how big is too big.
• Rosenbaum and Rubin (1985) say that 20 is a “large” value
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Balance tests

• Ho et al. warn that smaller matched samples can be more
likely to pass a balance test because of lower power.
• Propensity score based tests: X ⊥⊥ D | P(X )

• regress X on flexible polynomial in P(X ),D and test
significance of terms involving D

• Shaikh et al. (2006) propose a test based on
fP(X)(p | D = 1) and fP(X)(p | D = 0)
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LaLonde (1986)
• LaLonde’s critique: observational methods cannot always

reproduce the results from experimental study
• NSW experiment – job training targeted to those who have

highest barriers to employment (10,000 participants across
ten cities in the US in 1974-1975)
• comparison groups drawn from CPS and PSID – nationally

representative longitudinal surveys
• outcome is earnings in 1978, Y1978
• using this type of data to construct an observational

estimate:
• compare the NSW treatment to CPS or PSID comparison

sample
• use observational methods to control for differences

• the bias can be estimated:

bias = ∆̂obs.
TT − ÊNSW (Y1978 | D = 1)− ÊNSW (Y1978 | D = 0)
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Dehejia and Wahba

• LaLonde found that various regression, panel data,
selection methods could not produce the same results as
the NSW treatment-control comparison
• Dehejia and Wahba (1999,2002) argue that propensity

score matching solves LaLonde’s critique
• match NSW treatment to comparison group, compare to

experimental estimate
• or directly match NSW control to comparison group

• Smith and Todd (2005) was written in response
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Dehejia and Wahba

• note that selection here is different than if we had
observational data from a context where individuals could
choose to sign up for job training
• we are controlling for differences in two study populations

as well
• the bias is the bias in estimating the treatment effect for the

NSW experimental population (a select population)
• not the average effect of job training

• The debate is very useful to read for understanding
prevalent issues with propensity score matching.
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Smith and Todd (2005)
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Smith and Todd (2005)

• not robust
• reiterate concerns of Heckman, Ichimura, Smith and Todd

(1998) about the importance of
• rich set of conditioning variables available
• dependent variable is measured in same way for both

groups
• comparison sample being from same local labor markets
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Smith and Todd (2005)

• Inherent tradeoff between (M-1) and (M-2)
• adding more controls to X (pre-program earnings for one

year, two years) reduces the available sample
• using the propensity score can sometimes mask this
• note how Smith and Todd (2005) (and DW before them) use

sample restrictions before matching on the propensity score
• issues with combining separate samples:

• calendar time vs. program time
• self-reported vs. administrative earnings records
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Diff-in-diff matching

• Suppose there is an individual time-invariant fixed effect in
earnings.
• Using preprogram earnings as a control is not the right

approach.
• Instead we would difference out the fixed effect.

• We can combine this familiar approach with matching by
redefining the dependent variable as Yafter − Ybefore.
• Then match and average.
• Smith and Todd (2005) find that this approach is more

robust in the NSW data than matching on pre-program
earnings.
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Setting

• Analysis of vocational rehab (VR) program of the Canada
Pension Plan Disability Program (CPPD).
• Does the VR program work?
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Comparison group

• Treatment group – cohort of individuals who started VR
program in 1998
• Potential control groups:

• all CPPD beneficiaries
• VR dropouts
• CPPD beneficiaries who are “reassessed”
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Distribution of P

treatment effect, while at the same time, of course, changing its interpretation. More-

over, values of the propensity score near zero or one can lead to instability in the esti-

mates as well as poor finite sample performance of the IPW estimator (Busso et al.

2013). We present plots of the propensity score by treatment and comparison group

for men and women in Figures 1 and 2. These figures provide reason for concern about

the degree of overlap in the upper tails of the estimated propensity score distribution

for both males and females. Consequently, we trim the data in our analyses in order to
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Figure 1 Histogram of propensity score for comparison and treatment groups, men.
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Figure 2 Histogram of propensity score for comparison and treatment groups, women.
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Pre-matching balance

level of educational attainment and a higher proportion of persons with children for

both males and females.

The primary medical problems differ somewhat between the treatment and compari-

son groups as well as by gender. For example, in Table 2, males with diseases of the

nervous system comprise 26 percent of the treatment group, but nine percent of the

comparison group; mental disorders are 11 percent of the treatment group, but 25 per-

cent of the comparison group; and musculoskeletal and soft-tissue disorders are about

21 percent of both the treatment and comparison groups. In Table 3, the summary sta-

tistics for women indicate some different patterns: diseases of the nervous system are

four percent of the treatment group, but 10 percent of the comparison group; mental

disorders are 26 percent of the treatment group, but 38 percent of the comparison

group; and musculosketal and soft-tissue problems are 30 percent of the treatment

group and 27 percent of the comparison group.

The average earnings before entering the CPPD program are lower in the treatment

group than the comparison group. Moreover, the differences in average earnings

between the treatment and comparison groups are smaller for women. Regional

Table 3 Descriptive statistics, women

Treatment Comparison

Mean Standard
deviation

Mean Standard
deviation

Age (at onset of disability) 36.552 7.361 43.423 8.668

Married 0.507 0.504 0.618 0.486

Have children 0.522 0.503 0.410 0.492

[Less than high school]

High school 0.552 0.501 0.325 0.469

Post-secondary 0.164 0.373 0.143 0.350

University degree 0.149 0.359 0.097 0.296

[Other]

Infectious and parasitic diseases – – – –

Cancer 0.030 0.171 0.082 0.275

Blood diseases 0.000 0.000 0.000 0.000

Mental disorders 0.254 0.438 0.390 0.488

Diseases of the nervous system 0.045 0.208 0.107 0.309

Circulatory diseases 0.090 0.288 0.052 0.222

Respiratory diseases – – – –

Diseases of digestive system 0.090 0.288 0.017 0.131

Genitourinary system diseases 0.030 0.171 0.010 0.100

Musculoskeletal and soft-tissue disorders 0.299 0.461 0.263 0.441

Congenital diseases 0.015 0.122 0.013 0.113

Zero earnings 1-year prior to application 0.313 0.467 0.251 0.434

Zero earnings 2-years prior to application 0.254 0.438 0.228 0.420

Average earnings 1-year prior to application (dollars) 10796.25 13260.08 13778.91 15603.86

Average earnings 2-years prior to application (dollars) 13730.81 14902.95 16427.55 16576.09

Provincial unemployment rate 8.012 2.604 8.101 2.350

Duration on CPPD (days) 1242.254 587.261 1024.588 551.253

Number of observations 67 692
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Why matching?

• conditional independence is plausible

• why not OLS?
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estimators

• four different estimators:
• kernel regression matching
• llr matching
• genetic algorithm matching
• inverse probability weighting
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Post-matching balance

unemployment rates are relatively similar between the treatment and comparison

groups. The average time on the CPPD program is also similar for men (1276 days for

the treatment group, and 1260 days in the comparison group) and somewhat similar

for women (1282 days for the treatment group and 1154 days for the comparison

group).

We present the standardized differences between the treatment and comparison

groups before and after matching in Tables 4 and 5. We present these estimates based

on the IPW and the genetic matching algorithm for both men and women. Lee (2013)

notes that there is no consensus on how to best show balance and that there are a

number of ways to test for balance. However, standardized differences are straight-

forward to implement and relatively standard in the literature, so we use them. Not

surprisingly, the genetic matching algorithm tends to improve covariate balance relative

to IPW for many of the observed covariates.

Table 6 presents coefficient estimates from the propensity score models for males

and females. For males, higher levels of educational attainment are associated with in-

creases in the probability of participating in the CPPD-VR program. A few of the con-

trols for health problems are associated with decreases in the probability of

participating in CPPD-VR, relative to the omitted health problems category (endocrine

Table 4 Standardized differences in treatment and comparison group, inverse probability
weighting

Men Women

Before
matching

After
matching

Before
matching

After
matching

Age −67.9 12.7 −61.2 1.8

High school 66.3 0.7 35.7 4.1

College 13.6 3.8 5.5 −4.8

University 3.3 −6.9 13.7 −1.1

Married −4.6 6.1 −8.1 −7.8

Have children 6.7 −4.6 20.8 3.5

Infectious and parasitic diseases 8.1 −1.6 – –

Cancer 8.2 −2.5 −14.0 −1.8

Mental disorders −14.6 −0.7 −17.8 −6.8

Diseases of the nervous system 16.9 −2.5 −20.8 −2.0

Circulatory diseases −18.8 8.8 −1.9 −4.8

Respiratory diseases 0.0 −7.6 – –

Diseases of digestive system −5.3 −13.4 20.3 23.5

Genitourinary system diseases −9.3 −1.3 5.9 −6.0

Musculoskeletal and soft-tissue disorders −4.4 −1.5 14.2 6.2

Congenital diseases 9.5 14.1 4.7 2.9

Zero earnings 1-year prior to application 9.5 6.2 21.8 10.8

Zero earnings 2-years prior to application 11.6 21.6 14.5 2.4

Earnings 1-year prior to application −18.7 1.0 −9.5 −0.4

Earnings 2-years prior to application −22.7 −13.9 −3.6 5.8

Unemployment rate 0.2 −0.2 −19.0 −8.2

Duration on CPPD program −9.7 1.7 18.2 −2.2

Notes: Entries in the table are standardized differences between the treatment and comparison groups.
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Results

percent level and sometimes at the 10 percent level. Changing the imposed common

support region does not change the overall picture.

Looking across estimators in Tables 7 and 8, the genetic matching estimates end up

outliers in both cases: on the high side for women and on the low side for men. The

genetic matching estimates have the feature that they optimize balance and the feature

that they build on a single nearest neighbor matching estimator that does not use as

much of the information available in the comparison group as the other three estima-

tors. For this reason, we tend to discount the estimates from the genetic matching esti-

mator relative to the other three.

Substantively, the estimates reveal a large difference in impacts between men and

women and, not unrelated, estimates for women large enough to cast doubt on the val-

idity of our identification strategy. The estimates for women seem a bit large relative to

a casual prior based on the nature of the treatment and of the participants’ underlying

conditions. To address our concerns about the magnitude of some of the estimates,

and because we think it represents good empirical practice more generally, we turn

now to an analysis of the sensitivity of our estimates to lingering selection on unob-

served variables not accounted for by our choice of comparison group and our

Table 8 Estimates of the ATET of VR on individual outcomes, women

Matching estimator Inverse
probability
weighting

Genetic
matching

Kernel Local linear

Sample restricted to propensity score values [0.001, 0.35]

Leaving disability rolls 0.104 0.104 0.095 0.122

(0.086) (0.084) (0.080) (0.111)

Gainful employment 0.110 0.109 0.108 0.143

(0.082) (0.081) (0.078) (0.104)

Substantial gainful employment 0.169** 0.158** 0.144* 0.184*

(0.079) (0.079) (0.078) (0.103)

Sample size 631 631 631 631

Sample restricted to propensity score values [0.001, 0.30]

Leaving disability rolls 0.105 0.085 0.096 0.071

(0.088) (0.088) (0.087) (0.120)

Gainful employment 0.133 0.120 0.130 0.143

(0.087) (0.087) (0.084) (0.122)

Substantial gainful employment 0.180** 0.156* 0.159* 0.167

(0.083) (0.085) (0.084) (0.118)

Sample size 615 615 615 615

Sample restricted to propensity score values [0.001,0.40]

Leaving disability rolls 0.109 0.093 0.093 0.077

(0.086) (0.081) (0.078) (0.105)

Gainful employment 0.147 0.137 0.138 0.154

(0.085) (0.076) (0.074) (0.099)

Substantial gainful employment 0.195** 0.175** 0.171** 0.192**

(0.081) (0.075) (0.074) (0.098)

Sample size 642 642 642 642

Notes: * denotes statistical significance at the 10 percent level; ** denotes statistical significance at the 5 percent level.
See notes for Table 7.
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Conditional independence

When is (Y0,Y1) ⊥⊥ D | X?
• i.e., what should go in X?
• everything correlated with Di?
• everything that has a causal effect on Di?
• everything correlated with Di that also has a causal effect

on Ydi?
• the kitchen sink?
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Modeling with equations

One way to think about it is by specifying a model, in
equations...

Ydi = β′dXi + Udi

Di = 1(γ′Zi + Vi ≥ 0)
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Modeling with equations

Example 1:
• If Zi = Xi ...

then (M-1) is implied by (U1,U0) ⊥⊥ V |X .
• The latter holds if:

• (a) (U1,U0) ⊥⊥ V and (U1,U0,V ) ⊥⊥ X
• or (b) (U1,U0) ⊥⊥ V and X ⊥⊥ V | (U1,U0)
• or (c) (U1,U0) ⊥⊥ V and X ⊥⊥ (U1,U0) | V

• These conditions, and others, can be derived using

fU1,U0|V ,X =
fU1,U0,V ,X∫

fU1,U0,V ,X d(u1,u0)
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Example 1:
• If Zi = Xi ...then (M-1) is implied by (U1,U0) ⊥⊥ V |X .
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• These conditions, and others, can be derived using
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fU1,U0,V ,X∫
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• If Zi = Xi ...then (M-1) is implied by (U1,U0) ⊥⊥ V |X .
• The latter holds if:

• (a) (U1,U0) ⊥⊥ V and (U1,U0,V ) ⊥⊥ X
• or (b) (U1,U0) ⊥⊥ V and X ⊥⊥ V | (U1,U0)
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Modeling with equations

Example 2:
• Let Xi = (X1i ,X2i ) and Zi = (X1i , Z̃i ) and Wi = (X1,X2, Z̃ )

• Then
• (Y1,Y0) ⊥⊥ D | W if (U1,U0) ⊥⊥ V | W
• (Y1,Y0) ⊥⊥ D | X1 if (U1,U0,X2) ⊥⊥ (V , Z̃ ) | X1
• (Y1,Y0) ⊥⊥ D | X if (U1,U0) ⊥⊥ (V , Z̃ ) | X
• (Y1,Y0) ⊥⊥ D | Z if (U1,U0,X2) ⊥⊥ V | Z
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• Let Xi = (X1i ,X2i ) and Zi = (X1i , Z̃i ) and Wi = (X1,X2, Z̃ )
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• (Y1,Y0) ⊥⊥ D | W if (U1,U0) ⊥⊥ V | W
• (Y1,Y0) ⊥⊥ D | X1 if (U1,U0,X2) ⊥⊥ (V , Z̃ ) | X1
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• (Y1,Y0) ⊥⊥ D | Z if (U1,U0,X2) ⊥⊥ V | Z
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Modeling with equations

Example 3 – proxy control
• Suppose that Zi = ψ′Xi + ηi .
• Then (Y1,Y0) ⊥⊥ D | Z if

• (U1,U0) ⊥⊥ V | X , η
• and X ⊥⊥ V | Z

• How did I derive this?
• First, using the outcome and selection equations,

(Y1,Y0) ⊥⊥ D | Z if (X ,U1,U0) ⊥⊥ V | Z .
• Second,

fX ,U1,U0|V ,Z =
fU1,U0|η,V ,X ,Z fX |V ,Z fV ,Z∫

fU1,U0|η,V ,X ,Z fX |V ,Z fV ,Z d(x , u1, u0)

• Third, use fU1,U0|η,V ,X ,Z = fU1,U0|η,V ,X .



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)

Modeling with equations

Example 3 – proxy control
• Suppose that Zi = ψ′Xi + ηi .
• Then (Y1,Y0) ⊥⊥ D | Z if

• (U1,U0) ⊥⊥ V | X , η
• and X ⊥⊥ V
• and η ⊥⊥ V | X

• The intuition is pretty clear if η ≡ 0 – in addition to the same
condition for controlling for X we also need that X and V
(and hence X and D) are only related through the scalar
index ψ′X .
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Modeling with equations

Example 3 – proxy control
• Suppose that Zi = ψ′Xi + ηi .
• When is (Y1,Y0) ⊥⊥ D | X (in the case where η is not 0)?

• An application of example 2 shows that
(U1,U0) ⊥⊥ (η,V ) | X is sufficient.

• note: conditions for controlling for X vs controlling for Z are
not nested.
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• When is (Y1,Y0) ⊥⊥ D | X (in the case where η is not 0)?
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(U1,U0) ⊥⊥ (η,V ) | X is sufficient.
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MHE example

Mediator
• Suppose that Xi = Zi is an outcome of treatment –

Xi = ψ0 + ψ1Di + ηi .
• It is unclear how the treatment effect should be defined.
• We can write Ydi = β0d + β1dXdi + Udi where

Xdi = ψ0 + ψ1d + ηi ...
• ... so

Y1i−Y0i = β01−β00 + (β11−β10)(ψ0 +ηi ) +β11ψ1 +U1i−U0i

and

E(Y1i − Y0i ) = β01 − β00 + (β11 − β10)ψ0 + β11ψ1
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MHE example

Mediator
• Suppose that Xi = Zi is an outcome of treatment –

Xi = ψ0 + ψ1Di + ηi .
• It is unclear how the treatment effect should be defined.
• Alternatively,

Y1i − Y0i = β01 − β00 + (β11 − β10)Xi + U1i − U0i

and

E(Y1i − Y0i ) = β01 − β00 + (β11 − β10)E(Xi )
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MHE example

Mediator
• What is identified?

• If E(ηi | Di) = 0 and E(Udi | Di) = 0 then the first version of
the ATE is identified from E(Yi | Di = 1)− E(Yi | Di = 0).

• If (U0,U1) ⊥⊥ (D, η) then E(Yi | Di = 1,Xi = x)−E(Yi | Di =
0,Xi = x) = β01 − β00 + (β11 − β10)x .

• If η is correlated with U1,U0 – confounded mediator –
version 2 is not identified but version 1 is – “bad control”

• More on mediation analysis in Pearl (2014).
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Using DAGs

• A DAG is a directed acyclic graph.
• The graph is meant to encode causal relationships, in

much the same way that our equations do.
• The backdoor criterion is a useful way to determine

whether we should control for Xi .
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Using DAGs

• An example DAG

D

X

Y
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Using DAGs

• Arrows are directional, indicating the direction of causality.
• Lack of an arrow between two variables means no causal

effect.
• Simultaneity/reverse causality not allowed.
• A collider is a variable that has two arrows entering it
• Any other variable is a non-collider.
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Using DAGs

• Backdoor criterion
• X does not include any variables that are downstream from

D
• every “backdoor path” from D to Y – a path between D and

Y including an arrow into D – either (a) includes a collider
that is not part of X or (b) includes no colliders but includes
a variable in X

• If this is satisfied then conditioning on X identifies the
causal effect of D on Y .
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Using DAGs

• Example:

D

X U

Y



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)

Using DAGs

• Example:

D

Z X

Y

• It’s sufficient to control for Z .
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Using DAGs

• Example:

D

Z X

Y

• It’s sufficient to control for Z .
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Using DAGs

• Example:

D

X Z

Y

• It’s sufficient to control for Z .
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Using DAGs

• Example:

D

X Z

Y

• It’s sufficient to control for Z .
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Using DAGs

• Collider bias example:

D

X

Y

• Don’t control for X !
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Using DAGs

• Collider bias example:

D

X

Y

• Don’t control for X !
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Using DAGs

• Collider bias example:

D

V X U

Y

• Don’t control for X !
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Using DAGs

• Collider bias example:

D

V X U

Y

• Don’t control for X !
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Using DAGs

• Collider bias is similar but distinct from the confounded
mediator problem.
• Both are reasons to not necessarily include everything

related to both D and Y .
• See here for more examples.

http://causality.cs.ucla.edu/blog/index.php/2019/08/14/a-crash-course-in-good-and-bad-control
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Exacerbating bias

• Another reason to not include everything related to both D
and Y :
• In reality, (M-1) is likely not satisfied exactly and including

an additional control can make the bias worse.
• Suppose that Yi = β0 + β1Di + β2Xi + ui where

Cov(D,u) 6= 0
• bias if X is included: Cov(D̃,u)

Var(D̃)

• bias if X is omitted: Cov(D,β2X+u)
Var(D)

• If X is included, the numerator is often smaller but the
denominator is necessarily bigger!

• “Throwing out the baby with the bathwater.”
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Robustness

• What if there are variables that we fail to control for...how
bad can the bias be?
• Altonji, Elder, Taber
• Oster (2019)
• Cinelli and Hazlett (2019)
• Rosenbaum (1987) and Ichino et al. (2008)
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Oster (2019)

• Suppose Y = βX + Ψω0 + W2 + ε where X is scalar
treatment, ω0 are included confounders, W2 is an index of
unobserved confounders.
• result 1:

• Suppose that
Cov(X ,Ψω0)/Var(Ψω0) = Cov(X ,W2)/Var(W2) and
another more technical condition (Assumption 3).

• Let β̃ and R̃ denote the coefficient on X and the R-squared
from a regression of Y on X and ω0.

• Let β0 and R0 denote the coefficient on X and the
R-squared from a regression of Y on X alone.

• Then there is a unique, estimable value of ν such that
β̃ − νβ0 is a consistent estimator for β.

• Let Rmax be the hypothetical R-squared from a regression
of Y on X , ω0, and W2.

• ν is a function of Rmax .



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)

Oster (2019)

• Suppose Y = βX + Ψω0 + W2 + ε where X is scalar
treatment, ω0 are included confounders, W2 is an index of
unobserved confounders.
• result 1:

• Suppose that
Cov(X ,Ψω0)/Var(Ψω0) = Cov(X ,W2)/Var(W2) and
another more technical condition (Assumption 3).

• Let β̃ and R̃ denote the coefficient on X and the R-squared
from a regression of Y on X and ω0.

• Let β0 and R0 denote the coefficient on X and the
R-squared from a regression of Y on X alone.

• Then there is a unique, estimable value of ν such that
β̃ − νβ0 is a consistent estimator for β.

• Let Rmax be the hypothetical R-squared from a regression
of Y on X , ω0, and W2.

• ν is a function of Rmax .



Intro. Identification OLS Matching estimators Propensity score CGS2014 When is (M-1) satisfied? Robustness to failures of (M-1)

Oster (2019)

• Suppose Y = βX + Ψω0 + W2 + ε where X is scalar
treatment, ω0 are included confounders, W2 is an index of
unobserved confounders.
• result 2:

• Define δ such that
δCov(X ,Ψω0)/Var(Ψω0) = Cov(X ,W2)/Var(W2).

• There is a unique value of δ (also a function of Rmax ) for
which β = 0.

• We can assess sensitivity by considering whether this is a
plausible value for the proportionality parameter.

• psacalc in Stata.
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Cinelli and Hazlett (2019)

• Oster’s proportionality constant maybe isn’t easy to
interpret.
• Cinelli and Hazlett (2019) derive a bias formula in terms of

partial R2.
• D treatment, X included, Z excluded.
• Suppose that R2

Y∼Z |X ,D = R2
D∼Z |X

• If this common partial R2 is equal to

1
2

(√
f 4
q + 4f 2

q − f 2
q

)
where f 2

q = q2R2
Y∼D|X/(1− R2

Y∼D|X ) then including the
unobserved confounder reduces the coefficient on D by
100q%.

• They call RV = RV1 the robustness value.
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Cinelli and Hazlett (2019)

• They also have a robustness value at which statistical
significance is lost.
• Also: “if Z explained all residual variance in the outcome

how strongly associated with treatment would it need to be
to eliminate the estimated effect?”

• The answer is R2
Y∼D|X .

• They also provide tools for bounding the strength of
unobserved confounders using observed covariates.
(Section 4.4)
• This paper is easy to read and full of useful information for

sensitivity analysis in a regression framework; sensemakr
in R
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Rosenbaum bounds
• Suppose that Ui is an unobserved confounder and let

Pr(Di = 1 | Xi = x ,Ui) = exp(β′Xi + γUi). Then the relative
odds of treatment for two observations with Xi = Xj , ui 6= uj
is

Γ :=
Pr(Di = 1 | Xi ,ui)/Pr(Di = 0 | Xi ,ui)

Pr(Dj = 1 | Xj ,uj)/Pr(Dj = 0 | Xj ,uj)
= exp(γ(ui−uj))

• This is bounded between e−γ and eγ (scaling properly so
that γ > 0).

• Based on Rosenbaum (1987), Stata codes mhbounds and
rbounds provide bounds on the significance of estimated
treatment effects for different specified values of Γ.

• This relies on some strong assumptions, only works for
specific cases.

• See homework for an example of the use of rbounds.
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Ichino et al. (2008)

• They simulate an unobserved confounder U with a given
probability that depends on treatment (D) and outcomes
(Y ).
• The probabilities can be taken to match a particular

observed covariate in X .
• The matching estimator is calculated in the simulated data

using (U,X ) instead of only X .
• This also relies on some strong assumptions, only works

for specific cases (binary Y , e.g.)
• When U is simulated there is a corresponding odds ratio

for outcomes (“outcome effect”) and for treatment
(“selection effect”). These vary with Xi but can be
averaged.


