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* “The gold standard for drawing inferences about the effect
of a policy is a randomized controlled experiment.” (Athey
and Imbens, 2017, JEP)
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¢ “The gold standard for drawing inferences about the effect
of a policy is a randomized controlled experiment.” (Athey
and Imbens, 2017, JEP)

e “_..any special status for RCTs is unwarranted.” (Deaton
and Cartwright, 2018)



Randomized experiments
0000000000000 0000000

e |f D; is randomly assigned then
E(Y;| Di=1)—E(Y;| Di=0) = E(Y1 — Yoi)

e E(Yj; — Yoi) is the average treatment effect (ATE)
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® In sample, ~ B L B
Yi—Yo=581+S5 - S
where
° 5:1 is the sample average of Y3, — Yo;
* S; — Sy represents the selection bias in finite sample
e it is important to recognize that S; — Sy is equal to zero
only in expectation
e So it is super important to do inference well.
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¢ Passing a balance test does not mean that S; — Sy should
be small.
* it does detect problems with randomization mechanism
¢ useful to describe balance, but not to test
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e The imbalance is an issue of efficiency.
e This leads to the following issues:

e gtratification

® regression adjustment

® other experimental designs

e getting the standard errors right
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Stratification

Stratified random sampling

e Split the population into groups and randomly sample from
each group.

® The estimate should use population proportions for the
groups to aggregate back up.

® This is a useful way to increase precision of estimates.

* n.b: Clustered sampling is different — it generally reduces
precision.

® See Analysis of Household Surveys by Angus Deaton for a
good intro to these issues.
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Stratification

Stratified random sampling

e Split the population into groups and randomly sample from
each group.

® The estimate should use population proportions for the
groups to aggregate back up.

® This is a useful way to increase precision of estimates.

* n.b: Clustered sampling is different — it generally reduces
precision.

® See Analysis of Household Surveys by Angus Deaton for a
good intro to these issues.

¢ This is not what Athey and Imbens are talking about.
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Stratification

Stratified random assignment

e Split the sample into groups and randomly assign treatment
within each group.

e Estimate treatment effects within each stratum and then
aggregate using stratum shares.

® This is a useful way to increase precision of estimates.

® Athey and Imbens (2017) recommend stratifying as much
as possible — on characteristics that are predictive of
outcomes — with as few as 2 T and 2 C in each stratum.

® Paired random assignment is the extreme case of this with
1 Tand 1 Cin each stratum.
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Stratification

“Stratified estimation” under completely random
assignment
® Randomly assign treatment in the sample.
* Estimate treatment effects within “strata” and then
aggregate using stratum shares.
® This increases precision of estimates but not as much as
stratified random assignment does.



Randomized experiments
0000000 0e00000000000

Stratification

Regression adjustment

The approach on the previous slide is difficult if the
covariates do not easily define “strata” and/or the sample
size is small.

Instead we often estimate the regression:

Yi = Bo + B1Di + 85X + u;

But the OLS estimator is biased in finite samples...random
assignment of X; does not ensure that E(u; | D;, Xi) =0
OLS estimator is consistent but Freedman (2008) shows
that the finite sample bias can be considerable.

Turn covariates into indicators and include interactions —
benefits/costs?
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Stratification

Other assignment mechanisms

The key idea here is that randomization is not necessary
and in fact sacrifices efficiency for ...?

Section 2.4 in Deaton and Cartwright (2018)

don’t allow assignment based on unobservables!
requires a priori knowledge about outcomes

It's an old idea but papers by Banerjee, Chassang,
Montero, and Snowberg; Banerjee, Chassang, and
Snowberg; and Kasy are pushing the frontier on this.
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Inference in RCTs

e Deaton and Cartwright (2018): inference is super important
in RCTs as the selection bias is only zero in expectation.
e Some important issues:
* the t statistic does not have Student’s t distribution in small
samples (Fisher-Behrens problem)
e if the distribution of treatment effects is not symmetric,
normality is problematic anyway
e clustered standard errors are also problematic for similar
reasons
® regression adjustment can make the problem worse
(Young, 2017)
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Inference in RCTs

¢ Deaton and Cartwright (2018) simulation
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Inference in RCTs

CHANNELLING FISHER:
RANDOMIZATION TESTS AND THE STATISTICAL
INSIGNIFICANCE OF SEEMINGLY SIGNIFICANT
EXPERIMENTAL RESULTS’

ALWYN YOUNG

| follow R.A. Fisher’s The Design of Experiments (1935), using randomization statistical
inference to test the null hypothesis of no treatment effects in a comprehensive sample of 53
experimental papers drawn from the journals of the American Economic Association. In the
average paper randomization tests of the significance of individual treatment effects find 13 to 22
percent fewer significant results than found using authors’ methods. In joint tests of multiple
treatment effects appearing together in tables, randomization tests yield 33 to 49 percent fewer
statistically significant results than conventional tests. Bootstrap and jackknife methods support
and confirm the randomization results. JEL Codes: C12, C90.
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Inference in RCTs

e Solutions:
® be aware of asymmetry in data
® randomization inference
® |Imbens and Kolesar (2016) (later)

Standard error issues
000000000000000000
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Randomization inference

¢ Fisher’s exact p-value.

e The idea is to reassign treatment artificially in your data to
get D7 and re-estimate your effects.

¢ Doing this a bunch of times you get a distribution of
estimates and you locate the real-data estimate in this
distribution.

¢ Allows you to mimic the real process of random
assignment.

* The key drawback is that this is a test of the null of no
treatment effects, not of ATE = 0.
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One last thing on inference

e Athey and Imbens (2017) suggest that we should think of
our sample as fixed, not drawn from an infinite
superpopulation.

® From this viewpoint, they argue that our usual standard
errors are actually conservative.

e Similar idea in Abadie, Athey, Imbens, and Wooldridge
(2017) regarding clustering.
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Bias in RCTs

® There are well-known issues to be aware of that can cause
bias in ATE estimates:
® post-randomization differences
® non-compliance
® violations of SUTVA
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External validity

¢ the claim that RCTs are often limited in their external
validity is uncontroversial

e Deaton and Cartwright (2018) and Athey and Imbens
(2017) differ in their view of the importance of internal vs
external validity

e Heckman (2008) is relevant here too but | will focus on new
ideas from the Deaton and Cartwright (2018) reading
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External validity

e Some issues

e ATE versus other policy countefactuals

® Bertrand’s chicken and why replication in other settings is
not enough

® interactions; “support factors”

® general equilibrium effects and other scale problems

* what do average effects tell us about individual effects?
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External validity

e Some fixes

® there is a lot of recent work on using reweighting/stratifying
to extrapolate

® in addition to references in Deaton and Cartwright (2018),
section 3.5, see Rachel Meager’s work
e using RCTs to build and test theory

® in addition to references in Deaton and Cartwright (2018),
section 3.6, see Karen Ye’s work
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External validity

e Some fixes

® there is a lot of recent work on using reweighting/stratifying
to extrapolate

® in addition to references in Deaton and Cartwright (2018),
section 3.5, see Rachel Meager’s work
e using RCTs to build and test theory
® in addition to references in Deaton and Cartwright (2018),
section 3.6, see Karen Ye’s work

e this work is the future (imho)
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Overview

¢ Deaton and Cartwright (2018) stress the importance of
valid inference in RCTs.

e But issues with the appropriate standard errors are
relevant not for RCTs only
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Overview

Deaton and Cartwright (2018) stress the importance of
valid inference in RCTs.

But issues with the appropriate standard errors are
relevant not for RCTs only

we will talk about issues with std errors in OLS, with RCT
as a special case

we will talk more next class about OLS
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OLS estimator

Let X be an n x K matrix of covariates and y a n x 1 vector
of outcomes.

Denote the rows of X as X/ and elements of y as y;.
The OLS estimator can be written as

n 71 n
(X)Xt = (z x,-x,-') S Xy,
i=1 i=1

Let 8 = E(X;X])~'E(Xy;) and define e = y — X3, with
elements g;.
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Variance of OLS

e Treat X as non-stochastic and define ¥ = E(e¢’).
e Then Q = Var(Bors) = (X'X) 1 XWX (X' X)™
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Variance of OLS

e Treat X as non-stochastic and define W = E(e¢’).
e Then Q = Var(Bors) = (X'X) 1 XWX (X' X)™
e HAC estimators - heteroskedasticity and autocorrelation
consistent
e different formulas based on different restrictions on v
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“Conventional”

e if W = o2/, then X'UX = 02 X'X so
1 n
Qe = n(X'X)"! - 21: &2
=

where & = Y; — X!j3
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Heteroskedasticity robust

if heteroskedasticity but no autocorrelation, ¥ = diag(v)
then X'WX = S°7 , XiX/4;
the Eicker-Huber-White standard errors -

Qr=n(X'X)~ 1( ZXX’é;?) X' x)"!

® robust option in Stata
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Heteroskedasticity robust

® note:

® this is only an asymptotic result
* it works because 1 X'diag(&2)X —p 1 X"diag(yi) X
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Clustered formula

suppose € is block diagonal with L blocks
(more on when this is the appropriate model later)
cluster-robust standard errors are based on the fact that

L
L Z X/ &g X —p LI XWX
I=1
as L — o
This is the Liang-Zeger formula.

cluster option in Stata; have to specify clustering
variable
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Other HAC estimators

e gspatial autocorrelation

® Conley (1999) and others

e Stata .ado file on Conley’s website
e time series with serial correlation

* Newey West is most common (newey in Stata)
* but many other approaches out there too (see, e.g.,
https://scholar.harvard.edu/files/stock/files/...)

e Multiway clustering — Cameron, Gelbach, Miller (2011)
(cgmreg)


https://scholar.harvard.edu/files/stock/files/aea_2015_lecture4_har_rev.pdf
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Bias in heteroskedasticity robust ses

* The mean of the robust standard error, E(Q,), is
(X'X) (Z XiXj(Var(e;) — 2Var(e)hj + h§Wh,)> (X'X)!
i=1

where H = X(X'X)~'X and h; is called the leverage.
® we can improve it with bias corrections
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Bias in heteroskedasticity robust ses

Bias corrections involve replacing & with

° HCy = ﬁéf

° HC, = %h,,é/z

® or HC; = “jih)zé,z
AP: generally, HC3 is preferred to HC is preferred to HC;
when there is heteroskedasticity, but the reverse when
errors are homoskedastic.

this is a small sample problem — AP’s monte carlo uses
n=30

actually the asymmetry is crucial too — in AP’s example, X;
is binary with Pr(X; =1) = 0.1!
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e Imbens and Kolesar (2015) clarify a few points here.
® HC, adjustment makes the variance estimator unbiased

under homoskedasticity.
® the adjustments are very intuitive in the case of a single

binary regressor
® robust variance estimator:

where 65 = ny" 32, (Vi — Ya)?
® HC, adjustment replaces 55 with

65 = (nd - 1)_1 Z/ed(yi - Vd)z
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® Imbens and Kolesar (2015) clarify a few points here.
¢ the adjustments are very intuitive in the case of a single
binary regressor
® A well-known problem: Behrens-Fisher
® Welch solution: use HC, and use the Student’s t distribution
with Kjyeep, dof.

® Note: Kpeen involves unknown variances...feasible version
Kweich Uses sample variances
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® Imbens and Kolesar (2015) for general regression case.
¢ Bell and McCaffrey (2002) adjustment
® use HC, and use the Student’s t distribution with K3, dof.
* Note: Kj,, does not involve estimating the variances...
e Imbens and Kolesar (2015) find that BM is better in their
simulations.
e Formulas and R code are provided by Imbens and Kolesar
(2015).
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from Imbens and Kolesar, 2015

TaBLE 2.—COVERAGE RATES AND NORMALIZED STANDARD ERRORS (IN PARENTHESES) FOR DIFFERENT CONFIDENCE INTERVALS IN THE BEHRENS-FISHER PROBLEM
Angrist-Pischke Unbalanced Design, Ny = 27,N; = 3, Log-Normal Errors

1 1 1 v v
o(0) 05 0.85 1 L18 2
A. Coverage Rates and Median Standard Errors
Variance Cov. Med. Cov. Med. Cov. Med. Cov. Med. Cov. Med.
Estimator Dist/dof Rate SE Rate SE Rate SE Rate SE Rate SE
Fnomo oo 759 (0.26) 91.8 (0.41) 933 0.47) 9%.4 (055) 97.0 091
N-2 782 027) 926 (0.43) 93.9 (0.49) 94.9 (058) 973 (0.96)
Venw oo 66.8 0.22) 734 (0.26) 76.7 027) 80.6 (030) 911 (0.41)
N-2 68.2 0.23) 75.0 0.27) 784 0.29) 82.4 031) 926 (042)
wild 76.1 (0.36) 788 (0.36) 8.1 (0.36) 842 (038) 94.3 (0.46)
wildy 952 (0.44) 99.0 (0.63) 99.1 0.72) 99.2 (0.84) 99.5 (137)
Ve oo 713 (0.26) 772 (0.29) 80.2 (031) 83.7 (033) 933 (0.44)
N-2 725 0.27) 786 031) 817 (0.33) 853 (035) 94.5 (0.46)
wild 772 (0.38) 79.7 (038) 81.8 (0.38) 84.7 (0.39) 944 (0.48)
wildy 952 (0.44) 99.0 (0.63) 99.1 0.72) 99.2 (0.84) 99.5 (137)
Kweten 79.9 (0.47) 822 (0.4) 843 (0.44) 87.1 (0.4) 95.7 0.52)
Ko 90.1 (0.54) 95.8 057) 97.2 0.57) 98.3 (058) 98.9 0.62)
Kom 872 0.48) 94.9 (054) 972 057) 988 0.61) 99.7 081
Vues oo 754 031) 80.6 (034) 832 (0.36) 86.4 (038) 94.9 (0.49)
N-2 76.5 0.33) 819 (0.36) 84.6 0.37) 87.8 (0.40) 95.9 051)
maxgw ) 85.7 (0.30) 97.8 (0.4) 98.4 (0.50) 98.6 (058) 98.8 (0.93)
maxpc2 oo 86.9 0.33) 9.5 (0.46) 99.0 (0.52) 99.2 (0.60) 99.3 (0.94)
B. Mean Effective dof
Kiaen 2.1 23 25 27 4.1
Kwelen 49 75 85 9.7 14.0
Komt 25 25 25 25 25
‘ov. Rate” refers to coverage of nominal 95 fidence interval centages), and “Med. SE" refers to standard e alized by 1y /1557 and degree: dom (dof) adjustments.

are described in the text, and wild bootstrap confidence intervals (“wild” and “wildy”) are described in section 2 in the appedix; maxgw = Max(Vpoma: Ve ). and maxycs = max(Von Results are based on

1 million replications, except for wild bootstrap-based confidence intervals, which use 100,000 replications and 1,000 bootstrap draws in each replication.
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Clustered standard errors

When should we cluster?
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Clustered standard errors

* Moulton factor:
® Suppose e; = v; + ;.
2
* Intraclass correlation: pe = -7

® The ratio of the correct standard 7error formula to the
conventional one is:

Var(n, _
1+pxpe( ,_7( ’)+n1>

e Generally, clustering matters when (1) group effects
explain a lot of variation in outcome and (2) the regressors
are correlated within groups
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Clustered standard errors

Abadie, Athey, Imbens, Wooldridge (2017)
1. Actually it’s the intraclass correlation in residual x covariate
that matters.
® Suppose, e.g., Vi = 7, W; 4+ v; where v; is iid.
e there is no intraclass correlation in v; or in W; in their
example
® but there is intralcass correlation in this product
2. If we observe all (or most) of the clusters then we actually
shouldn’t cluster.
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Clustered standard errors

justification of the clustered std error formula requires a
large number of clusters

Imbens and Kolesar (2015) also provide a HC, formula
and dof adjustment for the clustering case from Bell and
McCaffrey (2002).

alternatively, we can use a block bootstrap
we will talk more about this when we talk about panel data



