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• “The gold standard for drawing inferences about the effect
of a policy is a randomized controlled experiment.” (Athey
and Imbens, 2017, JEP)

• “...any special status for RCTs is unwarranted.” (Deaton
and Cartwright, 2018)
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• If Di is randomly assigned then

E(Yi | Di = 1)− E(Yi | Di = 0) = E(Y1i − Y0i)

• E(Y1i − Y0i) is the average treatment effect (ATE)
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• In sample,
Ȳ1 − Ȳ0 = β̄1 + S̄1 − S̄0

where
• β̄1 is the sample average of Y1i − Y0i
• S̄1 − S̄0 represents the selection bias in finite sample

• it is important to recognize that S̄1 − S̄0 is equal to zero
only in expectation
• So it is super important to do inference well.
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• Passing a balance test does not mean that S̄1 − S̄0 should
be small.
• it does detect problems with randomization mechanism
• useful to describe balance, but not to test
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• The imbalance is an issue of efficiency.
• This leads to the following issues:

• stratification
• regression adjustment
• other experimental designs
• getting the standard errors right
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Stratification

Stratified random sampling
• Split the population into groups and randomly sample from

each group.
• The estimate should use population proportions for the

groups to aggregate back up.
• This is a useful way to increase precision of estimates.
• n.b: Clustered sampling is different – it generally reduces

precision.
• See Analysis of Household Surveys by Angus Deaton for a

good intro to these issues.

• This is not what Athey and Imbens are talking about.
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Stratification

Stratified random assignment
• Split the sample into groups and randomly assign treatment

within each group.
• Estimate treatment effects within each stratum and then

aggregate using stratum shares.
• This is a useful way to increase precision of estimates.
• Athey and Imbens (2017) recommend stratifying as much

as possible – on characteristics that are predictive of
outcomes – with as few as 2 T and 2 C in each stratum.

• Paired random assignment is the extreme case of this with
1 T and 1 C in each stratum.
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Stratification

“Stratified estimation” under completely random
assignment
• Randomly assign treatment in the sample.
• Estimate treatment effects within “strata” and then

aggregate using stratum shares.
• This increases precision of estimates but not as much as

stratified random assignment does.
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Stratification

Regression adjustment
• The approach on the previous slide is difficult if the

covariates do not easily define “strata” and/or the sample
size is small.

• Instead we often estimate the regression:
Yi = β0 + β1Di + β′2Xi + ui

• But the OLS estimator is biased in finite samples...random
assignment of Xi does not ensure that E(ui | Di ,Xi ) = 0

• OLS estimator is consistent but Freedman (2008) shows
that the finite sample bias can be considerable.

• Turn covariates into indicators and include interactions –
benefits/costs?
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Stratification

Other assignment mechanisms
• The key idea here is that randomization is not necessary

and in fact sacrifices efficiency for ...?
• Section 2.4 in Deaton and Cartwright (2018)
• don’t allow assignment based on unobservables!
• requires a priori knowledge about outcomes
• It’s an old idea but papers by Banerjee, Chassang,

Montero, and Snowberg; Banerjee, Chassang, and
Snowberg; and Kasy are pushing the frontier on this.
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Inference in RCTs

• Deaton and Cartwright (2018): inference is super important
in RCTs as the selection bias is only zero in expectation.
• Some important issues:

• the t statistic does not have Student’s t distribution in small
samples (Fisher-Behrens problem)

• if the distribution of treatment effects is not symmetric,
normality is problematic anyway

• clustered standard errors are also problematic for similar
reasons

• regression adjustment can make the problem worse
(Young, 2017)
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Inference in RCTs

• Deaton and Cartwright (2018) simulation
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Inference in RCTs

CHANNELLING FISHER:   
RANDOMIZATION TESTS AND THE STATISTICAL 
INSIGNIFICANCE OF SEEMINGLY SIGNIFICANT 

EXPERIMENTAL RESULTS* 
 

ALWYN YOUNG 
 
 
 

I follow R.A. Fisher’s The Design of Experiments (1935), using randomization statistical 
inference to test the null hypothesis of no treatment effects in a comprehensive sample of 53 
experimental papers drawn from the journals of the American Economic Association.  In the 
average paper randomization tests of the significance of individual treatment effects find 13 to 22 
percent fewer significant results than found using authors’ methods.  In joint tests of multiple 
treatment effects appearing together in tables, randomization tests yield 33 to 49 percent fewer 
statistically significant results than conventional tests.  Bootstrap and jackknife methods support 
and confirm the randomization results.  JEL Codes:  C12, C90. 

 
 
 
 
 

*I am grateful to Larry Katz, Alan Manning, David McKenzie, Ben Olken, Steve Pischke, Jonathan de 
Quidt, Eric Verhoogen and anonymous referees for helpful comments, to Ho Veng-Si for numerous conversations, 
and to the following scholars (and by extension their coauthors) who, displaying the highest standards of academic 
integrity and openness, generously answered questions about their randomization methods and data files:  Lori 
Beaman, James Berry, Yan Chen, Maurice Doyon, Pascaline Dupas, Hanming Fang, Xavier Giné, Jessica Goldberg, 
Dean Karlan, Victor Lavy, Sherry Xin Li, Leigh L. Linden, George Loewenstein, Erzo F.P. Luttmer, Karen Macours, 
Jeremy Magruder, Michel André Maréchal, Susanne Neckerman, Nikos Nikiforakis, Rohini Pande, Michael Keith 
Price, Jonathan Robinson, Dan-Olof Rooth, Jeremy Tobacman, Christian Vossler, Roberto A. Weber, and Homa 
Zarghamee.  
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Inference in RCTs

• Solutions:
• be aware of asymmetry in data
• randomization inference
• Imbens and Kolesar (2016) (later)
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Randomization inference

• Fisher’s exact p-value.
• The idea is to reassign treatment artificially in your data to

get D∗i and re-estimate your effects.
• Doing this a bunch of times you get a distribution of

estimates and you locate the real-data estimate in this
distribution.
• Allows you to mimic the real process of random

assignment.
• The key drawback is that this is a test of the null of no

treatment effects, not of ATE = 0.
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One last thing on inference

• Athey and Imbens (2017) suggest that we should think of
our sample as fixed, not drawn from an infinite
superpopulation.
• From this viewpoint, they argue that our usual standard

errors are actually conservative.
• Similar idea in Abadie, Athey, Imbens, and Wooldridge

(2017) regarding clustering.
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Bias in RCTs

• There are well-known issues to be aware of that can cause
bias in ATE estimates:
• post-randomization differences
• non-compliance
• violations of SUTVA
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External validity

• the claim that RCTs are often limited in their external
validity is uncontroversial
• Deaton and Cartwright (2018) and Athey and Imbens

(2017) differ in their view of the importance of internal vs
external validity
• Heckman (2008) is relevant here too but I will focus on new

ideas from the Deaton and Cartwright (2018) reading
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External validity

• Some issues
• ATE versus other policy countefactuals
• Bertrand’s chicken and why replication in other settings is

not enough
• interactions; “support factors”
• general equilibrium effects and other scale problems
• what do average effects tell us about individual effects?
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External validity

• Some fixes
• there is a lot of recent work on using reweighting/stratifying

to extrapolate
• in addition to references in Deaton and Cartwright (2018),

section 3.5, see Rachel Meager’s work
• using RCTs to build and test theory

• in addition to references in Deaton and Cartwright (2018),
section 3.6, see Karen Ye’s work

• this work is the future (imho)
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Overview

• Deaton and Cartwright (2018) stress the importance of
valid inference in RCTs.
• But issues with the appropriate standard errors are

relevant not for RCTs only

• we will talk about issues with std errors in OLS, with RCT
as a special case
• we will talk more next class about OLS
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OLS estimator

• Let X be an n×K matrix of covariates and y a n× 1 vector
of outcomes.
• Denote the rows of X as X ′i and elements of y as yi .
• The OLS estimator can be written as

(X ′X )−1X ′y =

(
n∑

i=1

XiX ′i

)−1 n∑
i=1

Xiyi

• Let β = E(XiX ′i )−1E(Xiyi) and define e = y − Xβ, with
elements ei .
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Variance of OLS

• Treat X as non-stochastic and define Ψ = E(ee′).
• Then Ω = Var(β̂OLS) = (X ′X )−1X ′ΨX (X ′X )−1

• HAC estimators - heteroskedasticity and autocorrelation
consistent
• different formulas based on different restrictions on Ψ
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“Conventional”

• if Ψ = σ2In then X ′ΨX = σ2X ′X so

Ω̂c = n(X ′X )−1

(
1
n

n∑
i=1

ê2
i

)

where êi = Yi − X ′i β̂
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Heteroskedasticity robust

• if heteroskedasticity but no autocorrelation, Ψ = diag(ψi)

• then X ′ΨX =
∑n

i=1 XiX ′i ψi

• the Eicker-Huber-White standard errors -

Ω̂r = n(X ′X )−1

(
1
n

n∑
i=1

XiX ′i ê
2
i

)
(X ′X )−1

• robust option in Stata
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Heteroskedasticity robust

• note:
• this is only an asymptotic result
• it works because 1

n X ′diag(ê2
i )X →p

1
n X ′diag(ψi )X
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Clustered formula

• suppose Ω is block diagonal with L blocks
• (more on when this is the appropriate model later)
• cluster-robust standard errors are based on the fact that

L−1
L∑

l=1

X ′l êl ê′lXl →p L−1X ′ΨX

as L→∞
• This is the Liang-Zeger formula.
• cluster option in Stata; have to specify clustering

variable
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Other HAC estimators

• spatial autocorrelation
• Conley (1999) and others
• Stata .ado file on Conley’s website

• time series with serial correlation
• Newey West is most common (newey in Stata)
• but many other approaches out there too (see, e.g.,

https://scholar.harvard.edu/files/stock/files/...)
• Multiway clustering – Cameron, Gelbach, Miller (2011)

(cgmreg)

https://scholar.harvard.edu/files/stock/files/aea_2015_lecture4_har_rev.pdf
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Bias in heteroskedasticity robust ses

• The mean of the robust standard error, E(Ω̂r ), is

(X ′X )−1

(
n∑

i=1

XiX ′i (Var(ei)− 2Var(ei)hii + h′i Ψhi)

)
(X ′X )−1

where H = X (X ′X )−1X and hii is called the leverage.
• we can improve it with bias corrections
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Bias in heteroskedasticity robust ses

• Bias corrections involve replacing ê2
i with

• HC1 = N
N−K ê2

i
• HC2 = 1

1−hii
ê2

i
• or HC3 = 1

(1−hii )2 ê2
i

• AP: generally, HC3 is preferred to HC2 is preferred to HC1
when there is heteroskedasticity, but the reverse when
errors are homoskedastic.
• this is a small sample problem – AP’s monte carlo uses

n = 30
• actually the asymmetry is crucial too – in AP’s example, Xi

is binary with Pr(Xi = 1) = 0.1!
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• Imbens and Kolesar (2015) clarify a few points here.
• HC2 adjustment makes the variance estimator unbiased

under homoskedasticity.
• the adjustments are very intuitive in the case of a single

binary regressor
• robust variance estimator:

σ̃2
0

n0
+

σ̃2
1

n1

where σ̃2
d = n−1

d

∑
i∈d (Yi − Ȳd )2

• HC2 adjustment replaces σ̃2
d with

σ̂2
d = (nd − 1)−1 ∑

i∈d (Yi − Ȳd )2
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• Imbens and Kolesar (2015) clarify a few points here.
• the adjustments are very intuitive in the case of a single

binary regressor
• A well-known problem: Behrens-Fisher
• Welch solution: use HC2 and use the Student’s t distribution

with K ∗Welch dof.
• Note: K ∗Welch involves unknown variances...feasible version

KWelch uses sample variances
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• Imbens and Kolesar (2015) for general regression case.
• Bell and McCaffrey (2002) adjustment
• use HC2 and use the Student’s t distribution with K ∗BM dof.
• Note: K ∗BM does not involve estimating the variances...

• Imbens and Kolesar (2015) find that BM is better in their
simulations.
• Formulas and R code are provided by Imbens and Kolesar

(2015).
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from Imbens and Kolesar, 2015
706 THE REVIEW OF ECONOMICS AND STATISTICS

Table 2.—Coverage Rates and Normalized Standard Errors (in Parentheses) for Different Confidence Intervals in the Behrens-Fisher Problem

Angrist-Pischke Unbalanced Design, N0 = 27, N1 = 3, Log-Normal Errors

I II III IV V

σ(0) 0.5 0.85 1 1.18 2

A. Coverage Rates and Median Standard Errors
Variance Cov. Med. Cov. Med. Cov. Med. Cov. Med. Cov. Med.
Estimator Dist/dof Rate SE Rate SE Rate SE Rate SE Rate SE

V̂homo ∞ 75.9 (0.26) 91.8 (0.41) 93.3 (0.47) 94.4 (0.55) 97.0 (0.91)
N − 2 78.2 (0.27) 92.6 (0.43) 93.9 (0.49) 94.9 (0.58) 97.3 (0.96)

V̂EHW ∞ 66.8 (0.22) 73.4 (0.26) 76.7 (0.27) 80.6 (0.30) 91.1 (0.41)
N − 2 68.2 (0.23) 75.0 (0.27) 78.4 (0.29) 82.4 (0.31) 92.6 (0.42)
wild 76.1 (0.36) 78.8 (0.36) 81.1 (0.36) 84.2 (0.38) 94.3 (0.46)
wild0 95.2 (0.44) 99.0 (0.63) 99.1 (0.72) 99.2 (0.84) 99.5 (1.37)

V̂HC2 ∞ 71.3 (0.26) 77.2 (0.29) 80.2 (0.31) 83.7 (0.33) 93.3 (0.44)
N − 2 72.5 (0.27) 78.6 (0.31) 81.7 (0.33) 85.3 (0.35) 94.5 (0.46)
wild 77.2 (0.38) 79.7 (0.38) 81.8 (0.38) 84.7 (0.39) 94.4 (0.48)
wild0 95.2 (0.44) 99.0 (0.63) 99.1 (0.72) 99.2 (0.84) 99.5 (1.37)
KWelch 79.9 (0.47) 82.2 (0.44) 84.3 (0.44) 87.1 (0.44) 95.7 (0.52)
K∗

Welch 90.1 (0.54) 95.8 (0.57) 97.2 (0.57) 98.3 (0.58) 98.9 (0.62)
KBM 87.2 (0.48) 94.9 (0.54) 97.2 (0.57) 98.8 (0.61) 99.7 (0.81)

V̂HC3 ∞ 75.4 (0.31) 80.6 (0.34) 83.2 (0.36) 86.4 (0.38) 94.9 (0.49)
N − 2 76.5 (0.33) 81.9 (0.36) 84.6 (0.37) 87.8 (0.40) 95.9 (0.51)

maxEHW ∞ 85.7 (0.30) 97.8 (0.44) 98.4 (0.50) 98.6 (0.58) 98.8 (0.93)
maxHC2 ∞ 86.9 (0.33) 98.5 (0.46) 99.0 (0.52) 99.2 (0.60) 99.3 (0.94)

B. Mean Effective dof
K∗

Welch 2.1 2.3 2.5 2.7 4.1
KWelch 4.9 7.5 8.5 9.7 14.0
KBM 2.5 2.5 2.5 2.5 2.5

“Cov. Rate” refers to coverage of nominal 95% confidence intervals (in percentages), and “Med. SE” refers to standard errors normalized by tK
0.975/t∞0.975. Variance estimators and degrees-of-freedom (dof) adjustments

are described in the text, and wild bootstrap confidence intervals (“wild” and “wild0”) are described in section 2 in the appedix; maxEHW = max(V̂homo, V̂EHW), and maxHC2 = max(V̂homo, V̂HC2). Results are based on
1 million replications, except for wild bootstrap-based confidence intervals, which use 100,000 replications and 1,000 bootstrap draws in each replication.

To investigate the importance of the assumption of the nor-
mality and symmetry of the errors, we also consider a design
with log-normal errors, εi | Di = d ∼ σ(d)Li, where Li is a
log-normal random variable, recentered and rescaled so that
it has mean zero and variance one. The results are reported in
table 2. Here the BM intervals perform substantially better
than Welch intervals. The undercoverage of the remaining
confidence intervals except the wild bootstrap with the null
imposed is even more severe than with normal errors. The
wild bootstrap intervals, however, again tend to be very con-
servative and wide for larger values of σ(0), although it is
possible that because they are allowed to be asymmetric
around the point estimate, they outperform the BM intervals
for some other error distributions not considered here.

For comparison, we also report in table 3 the results for
a simulation exercise with a balanced design where N0 =
N1 = N/2 = 15, and normal errors. Here KBM = 28 across
the designs, and since t28

0.975 = 2.05 is close to the 1.96, it
suggests that refinements are not important here. Indeed, the
actual coverage rates are close to nominal coverage rates
for essentially all procedures. For a sample size of 30 and
balanced design, the asymptotic normal-distribution-based
approximations are fairly accurate.

III. Linear Regression with General Regressors

Now we look at the general regression case, allowing for
multiple regressors and regressors with other than binomial
distributions.

A. Setup

We have an L-dimensional vector of regressors Xi and a
linear model:

Yi = X ′
iβ + εi, with E [εi|Xi] = 0,

var (εi|Xi) = σ2(Xi).

Let X be the N × L-dimensional matrix with ith row equal
to X ′

i , and let Y and ε be the N-vectors with ith elements
equal to Yi and εi, respectively. The ordinary least squares
estimator is given by

β̂ = (
X′X

)−1 (
X′Y

) =
(

N∑
i=1

XiX
′
i

)−1 (
N∑

i=1

XiYi

)
.

Without assuming homoskedasticity, the exact variance for
β̂ conditional on X is

V = var(β̂ | X) = (
X′X

)−1
N∑

i=1

σ2(Xi)XiX
′
i

(
X′X

)−1
,

with kth diagonal element Vk . For the general regression
case, the EHW robust variance estimator is

V̂EHW = (
X′X

)−1
N∑

i=1

(
Yi − Xiβ̂

)2
XiX

′
i

(
X′X

)−1
,
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Clustered standard errors

When should we cluster?
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Clustered standard errors

• Moulton factor:
• Suppose ei = νli + ηi .
• Intraclass correlation: ρe =

σ2
ν

σ2
ν+σ2

η

• The ratio of the correct standard error formula to the
conventional one is:

1 + ρxρe

(
Var(nl )

n̄
+ n̄ − 1

)
• Generally, clustering matters when (1) group effects

explain a lot of variation in outcome and (2) the regressors
are correlated within groups
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Clustered standard errors

Abadie, Athey, Imbens, Wooldridge (2017)
1. Actually it’s the intraclass correlation in residual × covariate

that matters.
• Suppose, e.g., Yi = τli Wi + νi where νi is iid.
• there is no intraclass correlation in νi or in Wi in their

example
• but there is intralcass correlation in this product

2. If we observe all (or most) of the clusters then we actually
shouldn’t cluster.
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Clustered standard errors

• justification of the clustered std error formula requires a
large number of clusters
• Imbens and Kolesar (2015) also provide a HC2 formula

and dof adjustment for the clustering case from Bell and
McCaffrey (2002).
• alternatively, we can use a block bootstrap
• we will talk more about this when we talk about panel data


