
Some basics Extensions/practical issues Factor models Synthetic control analysis Binary outcome models

Lecture 13 – More on Panel Data

Economics 8379
George Washington University

Instructor: Prof. Ben Williams



Some basics Extensions/practical issues Factor models Synthetic control analysis Binary outcome models

The linear panel model

• Basic model and assumptions:

yit = β′xit + ηi + νit

A1 E(νi1, . . . , νiT | xi1, . . . , xiT , ηi ) = 0
A2 Var(νi1, . . . , νiT | xi1, . . . , xiT , ηi ) = σ2IT

• These assumptions can be replaced by weaker but harder
to interpret assumptions.



Some basics Extensions/practical issues Factor models Synthetic control analysis Binary outcome models

Differencing and within variation

• Some notation first:
• yi = (yi1, . . . , yiT )′

• xi = (xi1, . . . , xiT )′

• νi = (νi1, . . . , νiT )′

• The basic idea you’ve seen before:

∆yit = β′∆xit + ∆νit

and E(∆νit | ∆xit ) = 0

• In matrix notation,

Dyi = Dxiβ + Dνi

where D is the (T − 1)× T first difference operator.
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Differencing and within variation

• The fixed effects regression is not
(
∑n

i=1 x ′i D
′Dxi)

−1∑n
i=1 x ′i D

′Dyi , though this first
differences estimator would be consistent under
assumption A1.

• Because Var(Dνi | xi) = σ2DD′, the GLS estimator is more
efficient,

β̂fe := (
n∑

i=1

x ′i D
′(DD′)−1Dxi)

−1
n∑

i=1

x ′i D
′(DD′)−1Dyi
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Differencing and within variation

• But Q = D′(DD′)−1D is idempotent and equal to IT − ιι′/T .
This is the within-group operator.
• The fixed effects estimator is based on within variation.
• The fixed effects estimator is equivalent to including entity

dummies.
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Differencing and within variation

• Properties of the fixed effects (or within-group) estimator:
• For a fixed T , β̂fe is unbiased and optimal1, and as n→∞ it

is consistent and asymptotically normal.
• Estimates of ηi are unbiased but only consistent if T →∞.
• If T →∞ then β̂fe is consistent, even if n is fixed.
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Differencing and within variation

• Robust standard errors:
• If A2 does not hold then the usual standard error formula for

OLS on the transformed data is inconsistent.
• If T is fixed and n is large then the clustered (on entity)

standard error formula provides a HAC estimator.
• If T is large and n is fixed then a Newey West type std error

estimator is required for consistency under serial
correlation.
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Differencing and within variation

• Under serial correlation in νit , the fixed effects estimator is
not optimal. Let ν∗i = Dνi .
• Generally, if Var(ν∗i | xi ) = Ω(xi ) then the GLS estimator is(

n∑
i=1

x ′i D
′Ω(xi )Dxi

)−1 n∑
i=1

x ′i D
′Ω(xi )Dyi

• In the special case where Var(ν∗i | xi ) = Ω, replace Ω(xi )
with

Ω̂ = n−1
n∑

i=1

ν̂∗i ν̂
∗′
i

to get a feasible GLS estimator.



Some basics Extensions/practical issues Factor models Synthetic control analysis Binary outcome models

Random effects

• Pooled OLS estimator is

β̂pooled =

(
n∑

i=1

x ′i xi

)
n∑

i=1

x ′i yi

• It’s unbiased and consistent only under the assumption
that E(ηixit ) = 0.
• Under assumption A2 and Var(ηi | xi) = σ2

η ,

Var(ηi ι+ νi | xi) = σ2
ηιι
′ + σ2IT
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Random effects

• The GLS estimator is then

β̂GLS =

(
n∑

i=1

xiV−1x ′i

)
n∑

i=1

xiV−1yi

where V−1 = σ−2 (IT − σ2
ηιι
′/(σ2 + Tσ2

η)
)
.

• This is the random effects estimator.
• When T →∞, this becomes the fixed effects estimator.
• More generally, if ψ = σ2

η/(σ2 + Tσ2
η) goes to 0 we get fixed

effects and if ψ goes to 1 we get pooled OLS.
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Random effects

• Feasible GLS
• Estimate ψ in first stage to get estimate of V̂ .
• Several ways to estimate ψ.
• This is what xtreg ...,re in Stata does.

• An alternative is the maximum likelihood estimator that will
estimate β and σ and σ2

η simultaneously.
• the usual MLE assumes that ηi ∼ N(0, σ2

η) though different
distributions can be used.
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Random effects vs fixed effects

• The primary difference between the two is that random
effects assumes ηi is uncorrelated with xit .
• The idea of fixed (non-random) versus random effects is

not the real distinction.
• Mundlak (1978) showed that the fixed effects estimator is

equivalent to a random effects type (GLS) estimator of the
model where ηi = a′x̄i + ωi where ωi is independent of xi .
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Extensions/practical issues

• inference – Bertrand et al. (2004); Bell and McCaffrey
(2002); Cameron, Gelbach and Miller (2008); Imbens and
Kolesar (2014)

• heterogeneity – what does DD/FE estimate?
Goodman-Bacon (2018), Borusyak and Jaravel (2017),
Callaway and Sant’Anna (2019)
• common trends – synthetic control and interactive fixed

effects
• IV/GMM – tradeoffs in specifying moment conditions

• measurement error – exacerbated by FE?
• dynamic models

• large n or T or both?
• nonlinear models
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Measurement error

• Motivating example – Bover and Watson (2000)
• consider a simplified version of the model from Arellano

(2003)
• Conditional money demand equation:

• yit denotes cash holdings (real money balances) of firm i in
year t

• xit denotes sales
• ηi = −log(ai) where ai denotes a firm’s “financial

sophistication”
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Measurement error

• Suppose x̃it = xit + εit and the true regressor values, xit are
unobserved.
• Fixed effects can exacerbate measurement error bias:

• The measurement error bias in the FE estimator when
T = 2 is β

(
1− 1

1+λ

)
where

λ = Var(∆εit )/Var(∆xit )

• If εit and xit are both iid then this attentuation bias is identical
to the cross-sectional bias.

• If εit is iid but xit is positively serially correlated then the bias
is larger than in the cross-section.
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Measurement error

• When T > 2, εit is iid and xit is positively serially correlated
– Griliches and Hausman (1986) show that the bias of the
fixed effects estimator lies between the bias of pooled OLS
and that of OLS in first-differences.

• Panel IV can be a solution to the measurement error
problem when εit is not serially correlated and xit is.
• If ηi is independent (random effects/pooled OLS model)

then
E(x̃is(yit − β′x̃it )) = 0

for s 6= t
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Measurement error

• If ηi is correlated with xit , one solution is to take first
differences and use the moment conditions

E(x̃is(∆yit − β′∆x̃it )) = 0

for s = 1, . . . , t − 2, t + 1, . . . ,T
• This requires T ≥ 3.
• Also, the rank condition should be considered carefully.

What if xit is white noise? What is xit is a random walk?
What if xit = αi + ξit?

• With larger T , there is a tradeoff between allowing serial
correlation in εit and needing serial correlation in xit .
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Measurement error
• Table from Bover and Watson (2000):
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Measurement error

• The relationship among the pooled OLS, FE, and first
difference estimators is consistent with measurement error
in sales.
• Column (4) is GMM on first differences using other time

periods as instruments.
• The Sargan test here is also marginally suggestive of

measurement error.
• Columns (5) and (6) seem to correct for measurement

error and are consistent with the expectation that pooled
OLS should be downward biased.
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AR model with fixed effects

• Consider as a simple example the autoregressive model:
yit = αyi(t−1) + ηi + νit

B1 E(νit | y t−1
i , ηi ) = 0

B2 E(ν2
it | y

t−1
i , ηi ) = σ2

B3 (mean stationarity) E(yi0 | ηi ) = ηi/(1− α)
B4 (covariance stationarity) Var(yi0 | ηi ) = σ2/(1− α2)

• The fixed effects estimator has a bias that is
• equal to −(1 + α)/2 when T = 2
• approximately −(1 + α)/T for large T

• This is called the Nickell bias due to pioneering work of
Nickell (1981).
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AR model with fixed effects

• Without assumptions B3 and B4 the bias is more
complicated.
• E.g., if T = 2 and σ2

η/Var(νi1) is large then the bias is very
small.

• What if T is large but the same order of magnitude as n?
• Formally, if n/T → c > 0 then

√
nT (α̂fe − α) ≈ N(−c(1 + α), (1− α2)/(nT ))

• For moderate values of T , a bias-corrected estimator:

α̂fe,bc = α̂fe +
1 + α̂fe

T
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IV solution

• Anderson and Hsiao (1981, 1982) suggested using an IV
estimator that uses yi(t−2) or ∆yi(t−2) as an instrument for
∆yit when T ≥ 3 or T ≥ 4.

• There are potentially many more moment conditions under
assumption B1:

E(y t−1
i (∆yit − α∆yi(t−1))) = 0, t = 2, . . . ,T
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IV solution

• Holtz-Eakin, Newey, and Rosen (1988) and Arellano and
Bond (1991) suggest implementing a GMM estimator that
uses all (T − 1)T/2 moment conditions.
• The Arellano Bond estimator uses a one-step optimal

weighting matrix that accounts for serial correlation due to
differencing,

V̂ =
n∑

i=1

z ′i DD′zi

• There is a bias however when n ≈ T that is proportional to
1/n.
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IV solution

• Advice:

• When T is larger than n, use FE.

• When n is larger than T , use Arellano-Bond.

• When n is similar in magnitude to T , use bias-correction or
limited number of instruments/moments.
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A factor model

• Suppose that
Yit = λ′tαi + εit

• The αi is a vector of common factors.
• The εit are idiosyncratic factors.
• The λt are factor loadings.
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A factor model

• Identification based on:

Var(Yi) = ΛVar(αi)Λ′ + ∆

under restrictions on ∆
• if T is small, ∆ diagonal is typical restriction
• if T is large, we can do better

• Normalizations needed:
• For example, E(αi ) = 0 and Var(αi ) = I and Λ is lower

triangular.
• See Anderson and Rubin (1954) and Williams

(forthcoming, Ect. Rev.).
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The “interactive fixed effects” model

• An extension of the twoway FE model:

Yit = β′Xit + λ′tαi + εit

• Often a time FE is explicitly included,

Yit = β′Xit + λ0t + λ′tαi + εit

• This is more general, more flexible than the “entity-specific
trend” modelling approach.
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The “interactive fixed effects” model

• We will talk about several ways to estimate this model.
• Bai (2009)
• Ahn, Lee, and Schmidt (2013)
• A new approach that Bob Phillips and I have been working

on.
• The synthetic control method.
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Application

• Divorce rates and divorce law reforms.
• Friedberg (1998) – reforms lead to increased divorce rate,

using FE/DD with state-specific quadratic trends
• Wolfers (2006) cast doubt on these results, arguing in part

that the state-specific quadratic trend method is not very
robust

• Kim and Oka (2014) applied Bai (2009)’s IFE estimator and
found that results are more robust.
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Bai (2009)’s “interactive fixed effects” estimator

• If n and T are both large then we can treat λt and αi as
parameters to be estimated.

• The problem is to minimize

n∑
i=1

T∑
t=1

(
Yit − β′Xit − λ′tαi

)2
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Bai (2009)’s “interactive fixed effects” estimator

• Bai (2009) suggests doing this by iterating the following
two steps.
1. Given {λ(s)t } and {α(s)

i }, choose β = β(s+1) to minimize

n∑
i=1

T∑
t=1

(
Yit − β′Xit − λ(s)′t α

(s)
i

)2

2. Given β = β(s+1), choose λt = λ
(s+1)
t and α = α

(s+1)
i to

minimize
n∑

i=1

T∑
t=1

(
Yit − β(s+1)′Xit − λ′tαi

)2
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Ahn, Lee, and Schmidt (2013)

• ALS (2013) propose a GMM estimation strategy based on
quasi-differencing.
• This is easiest to see when αi is scalar. In that case,

Yit −
λt

λs
Yis = β′

(
Xit −

λt

λs
Xis

)
+ ũit

• Under various exogeneity conditions we get moments such
as

E
(

Ziτ

(
Yit −

λt

λs
Yis − β′

(
Xit −

λt

λs
Xis

)))
= 0

where Ziτ can be Yiτ or Xiτ .
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Ahn, Lee, and Schmidt (2013)

• The propose a two step optimal GMM estimator based on
all valid moment conditions.
• Rank condition is not super transparent – need to use the

moments to identify β and λt .
• But this can work with fairly small T .
• One caveat: moment conditions proliferate as T increases,

as in Arellano-Bond.
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Phillips and Williams
• Define the linear projection,

αi = ψ′Xi + ξi ,

where ξi is uncorrelated with Xi

• Plugging this in we get

Yit = β′Xit + λ′tψ
′Xi + λ′tξi + εit

• We propose a least squares estimator that minimizes

n∑
i=1

T∑
t=1

(
Yit − β′Xit − λ′tψ′Xi

)2

• This is similar to Bai (2009) except that in “step 2” we use a
method to estimate λt and ψ that works with small T .
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Synthetic control analysis

• Similar to matching-based estimators.
• The idea is to compare the treated state to a weighted

average of control states.
• The weights are chosen to match covariates and past

outcomes.
• Abadie et al. (2010) argue that this works under a general

interactive fixed effects and time-varying coefficient
specification
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Synthetic control analysis
• The method in principle:

• Suppose states s = 1, . . . ,S are controls and state S + 1 is
treated.

• First, find nonnegative weights w1, . . . ,wS that add up to 1
so that

S∑
s=1

wsXs = XS+1

and
S∑

s=1

wsYst = YS+1,t

for each period t before treatment occurs at T0.
• Then, for t > T0, estimate the TT using these weights

YS+1,t −
S∑

s=1

wsYst
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Synthetic control analysis

• Suppose
Y0st = λ0t + λ′1tγs + β′tXs + εst

• For large T0, the above method would ensure that γs and
Xs are equal between S + 1 and the “synthetic control”
• So Y0,S+1,T0+1,Y0,S+1,T0+2, ... are unbiased estimates of

the counterfactuals.
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Synthetic control analysis

• The method in practice:
• First, find nonnegative weights w1, . . . ,wS that add up to 1

so that
||X1 − X0W ||

is minimized.
• Then, for t > T0, estimate the TT using these weights

YS+1,t −
S∑

s=1

wsYst
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Some key theoretical points about the estimator

• The method requires large T0.
• Ferman and Pinto (2016) show that the method is typically

still biased, though it generally outperforms DiD.
• Requires the other states to be roughly comparable –

convex hull assumption.
• If we allow more general weights, this is not necessary, but

then results rely on extrapolation.
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• Inference – Abadie et al. (2010) propose formalizing a
placebo test as a permutation test.

• choice of metric || · || –
•
√

(X1 − X0W )′V (X1 − X0W ) where V is chosen to
minimize prediction error

• Stata command: synth



Some basics Extensions/practical issues Factor models Synthetic control analysis Binary outcome models

• Inference – Abadie et al. (2010) propose formalizing a
placebo test as a permutation test.
• choice of metric || · || –

•
√

(X1 − X0W )′V (X1 − X0W ) where V is chosen to
minimize prediction error

• Stata command: synth



Some basics Extensions/practical issues Factor models Synthetic control analysis Binary outcome models

Synthetic control analysis

• Abadie et al. (2010)
• Proposition 99 in California in 1988 to control tobacco

consumption (increased tax and other measures).
• Did this decrease tobacco consumption?
• First state to do this and most states did not implement

similar measures until 2000.
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Synthetic control analysis
• Abadie et al. (2010)Abadie, Diamond, and Hainmueller: Synthetic Control Methods for Comparative Case Studies 499

programs in the 1989–2000 period and they are excluded from
the donor pool. We also discard all states that raised their state
cigarette taxes by 50 cents or more over the 1989 to 2000 pe-
riod (Alaska, Hawaii, Maryland, Michigan, New Jersey, New
York, Washington). Notice that, even if smaller tax increases
substantially reduced smoking in any of the control states that
gets assigned a positive weight in the synthetic control, this
should if anything attenuate the treatment effect estimate that
we obtain for California. Finally, we also exclude the District
of Columbia from our sample. Our donor pool includes the
remaining 38 states. Our results are robust, however, to the in-
clusion of the discarded states.

Our outcome variable of interest is annual per capita ciga-
rette consumption at the state level, measured in our dataset as
per capita cigarette sales in packs. We obtained these data from
Orzechowski and Walker (2005) where they are constructed us-
ing information on state-level tax revenues on cigarettes sales.
This is the most widely used indicator in the tobacco research
literature, available for a much longer time period than survey-
based measures of smoking prevalence. A disadvantage of tax-
revenue-based data relative to survey data on smoking preva-
lence is that the former are affected by cigarette smuggling
across tax jurisdictions. We discuss this issue later in this sec-
tion. We include in X1 and X0 the values of predictors of
smoking prevalence for California and the 38 potential con-
trols, respectively. Our predictors of smoking prevalence are:
average retail price of cigarettes, per capita state personal in-
come (logged), the percentage of the population age 15–24, and
per capita beer consumption. These variables are averaged over
the 1980–1988 period and augmented by adding three years of
lagged smoking consumption (1975, 1980, and 1988). Appen-
dix A provides data sources.

Using the techniques described in Section 2, we construct
a synthetic California that mirrors the values of the predictors
of cigarette consumption in California before the passage of
Proposition 99. We estimate the effect of Proposition 99 on per
capita cigarette consumption as the difference in cigarette con-
sumption levels between California and its synthetic versions
in the years after Proposition 99 was passed. We then perform a
series of placebo studies that confirm that our estimated effects
for California are unusually large relative to the distribution of
the estimate that we obtain when we apply the same analysis to
the states in the donor pool.

3.3 Results

Figure 1 plots the trends in per capita cigarette consumption
in California and the rest of the United States. As this figure
suggests, the rest of the United States may not provide a suit-
able comparison group for California to study the effects of
Proposition 99 on per capita smoking. Even before the passage
of Proposition 99 the time series of cigarette consumption in
California and in the rest of the United States differed notably.
Levels of cigarette consumption were similar in California and
the rest of the United States in the early 1970s. Trends began to
diverge in the late 1970s, when California’s cigarette consump-
tion peaked and began to decline while consumption in the rest
of the United States was still rising. Cigarette sales declined in
the 1980s, but with larger decreases in California than in the rest
of the United States. In 1988, the year Proposition 99 passed,
cigarette consumption was about 27% higher in the rest of the

Figure 1. Trends in per-capita cigarette sales: California vs. the rest
of the United States.

United States relative to California. Following the law’s pas-
sage, cigarette consumption in California continued to decline.
To evaluate the effect of Proposition 99 on cigarette smoking
in California, the central question is how cigarette consumption
would have evolved in California after 1988 in the absence of
Proposition 99. The synthetic control method provides a sys-
tematic way to estimate this counterfactual.

As explained above, we construct the synthetic California as
the convex combination of states in the donor pool that most
closely resembled California in terms of pre-Proposition 99 val-
ues of smoking prevalence predictors. The results are displayed
in Table 1, which compares the pretreatment characteristics of
the actual California with that of the synthetic California, as
well as with the population-weighted average of the 38 states
in the donor pool. We see that the average of states that did not
implement a large-scale tobacco-control program in 1989–2000
does not seem to provide a suitable control group for Califor-
nia. In particular, prior to the passage of Proposition 99 average
beer consumption and cigarette retail prices were lower in the
average of the 38 control states than in California. Moreover,
prior to the passage of Proposition 99 average cigarette sales
per capita were substantially higher on average in the 38 con-

Table 1. Cigarette sales predictor means

California
Average of

Variables Real Synthetic 38 control states

Ln(GDP per capita) 10.08 9.86 9.86
Percent aged 15–24 17.40 17.40 17.29
Retail price 89.42 89.41 87.27
Beer consumption per capita 24.28 24.20 23.75
Cigarette sales per capita 1988 90.10 91.62 114.20
Cigarette sales per capita 1980 120.20 120.43 136.58
Cigarette sales per capita 1975 127.10 126.99 132.81

NOTE: All variables except lagged cigarette sales are averaged for the 1980–1988 period
(beer consumption is averaged 1984–1988). GDP per capita is measured in 1997 dollars,
retail prices are measured in cents, beer consumption is measured in gallons, and cigarette
sales are measured in packs.
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trol states than in California. In contrast, the synthetic Califor-
nia accurately reproduces the values that smoking prevalence
and smoking prevalence predictor variables had in California
prior to the passage of Proposition 99.

Table 1 highlights an important feature of synthetic control
estimators. Similar to matching estimators, the synthetic con-
trol method forces the researcher to demonstrate the affinity be-
tween the region exposed to the intervention of interest and its
synthetic counterpart, that is, the weighted average of regions
chosen from the donor pool. As a result, the synthetic control
method safeguards against estimation of “extreme counterfactu-
als,” that is, those counterfactuals that fall far outside the convex
hull of the data (King and Zheng 2006). As explained in Sec-
tion 2.3, we chose V among all positive definite and diagonal
matrices to minimize the mean squared prediction error of per
capita cigarette sales in California during the pre-Proposition 99
period. The resulting value of the diagonal element of V asso-
ciated to the log GDP per capita variable is very small, which
indicates that, given the other variables in Table 1, log GDP
per capita does not have substantial power predicting the per
capita cigarette consumption in California before the passage
of Proposition 99. This explains the discrepancy between Cali-
fornia and its synthetic version in terms of log GDP per capita.

Table 2 displays the weights of each control state in the syn-
thetic California. The weights reported in Table 2 indicate that
smoking trends in California prior to the passage of Proposi-
tion 99 is best reproduced by a combination of Colorado, Con-
necticut, Montana, Nevada, and Utah. All other states in the
donor pool are assigned zero W-weights.

Figure 2 displays per capita cigarette sales for California and
its synthetic counterpart during the period 1970–2000. Notice

Table 2. State weights in the synthetic California

State Weight State Weight

Alabama 0 Montana 0.199
Alaska – Nebraska 0
Arizona – Nevada 0.234
Arkansas 0 New Hampshire 0
Colorado 0.164 New Jersey –
Connecticut 0.069 New Mexico 0
Delaware 0 New York –
District of Columbia – North Carolina 0
Florida – North Dakota 0
Georgia 0 Ohio 0
Hawaii – Oklahoma 0
Idaho 0 Oregon –
Illinois 0 Pennsylvania 0
Indiana 0 Rhode Island 0
Iowa 0 South Carolina 0
Kansas 0 South Dakota 0
Kentucky 0 Tennessee 0
Louisiana 0 Texas 0
Maine 0 Utah 0.334
Maryland – Vermont 0
Massachusetts – Virginia 0
Michigan – Washington –
Minnesota 0 West Virginia 0
Mississippi 0 Wisconsin 0
Missouri 0 Wyoming 0

Figure 2. Trends in per-capita cigarette sales: California vs. syn-
thetic California.

that, in contrast to per capita sales in other U.S. states (shown
in Figure 1), per capita sales in the synthetic California very
closely track the trajectory of this variable in California for the
entire pre-Proposition 99 period. Combined with the high de-
gree of balance on all smoking predictors (Table 1), this sug-
gests that the synthetic California provides a sensible approxi-
mation to the number of cigarette packs per capita that would
have been sold in California in 1989–2000 in the absence of
Proposition 99.

Our estimate of the effect of Proposition 99 on cigarette con-
sumption in California is the difference between per capita ciga-
rette sales in California and in its synthetic version after the pas-
sage of Proposition 99. Immediately after the law’s passage, the
two lines begin to diverge noticeably. While cigarette consump-
tion in the synthetic California continued on its moderate down-
ward trend, the real California experienced a sharp decline. The
discrepancy between the two lines suggests a large negative ef-
fect of Proposition 99 on per capita cigarette sales. Figure 3
plots the yearly estimates of the impacts of Proposition 99, that
is, the yearly gaps in per capita cigarette consumption between
California and its synthetic counterpart. Figure 3 suggests that
Proposition 99 had a large effect on per capita cigarette sales,
and that this effect increased in time. The magnitude of the es-
timated impact of Proposition 99 in Figure 3 is substantial. Our
results suggest that for the entire 1989–2000 period cigarette
consumption was reduced by an average of almost 20 packs per
capita, a decline of approximately 25%.

In order to assess the robustness of our results, we included
additional predictors of smoking prevalence among the vari-
ables used to construct the synthetic control. Our results stayed
virtually unaffected regardless of which and how many predic-
tor variables we included. The list of predictors used for robust-
ness checks included state-level measures of unemployment,
income inequality, poverty, welfare transfers, crime rates, drug
related arrest rates, cigarette taxes, population density, and nu-
merous variables to capture the demographic, racial, and social
structure of states.
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per capita does not have substantial power predicting the per
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of Proposition 99. This explains the discrepancy between Cali-
fornia and its synthetic version in terms of log GDP per capita.

Table 2 displays the weights of each control state in the syn-
thetic California. The weights reported in Table 2 indicate that
smoking trends in California prior to the passage of Proposi-
tion 99 is best reproduced by a combination of Colorado, Con-
necticut, Montana, Nevada, and Utah. All other states in the
donor pool are assigned zero W-weights.

Figure 2 displays per capita cigarette sales for California and
its synthetic counterpart during the period 1970–2000. Notice
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that, in contrast to per capita sales in other U.S. states (shown
in Figure 1), per capita sales in the synthetic California very
closely track the trajectory of this variable in California for the
entire pre-Proposition 99 period. Combined with the high de-
gree of balance on all smoking predictors (Table 1), this sug-
gests that the synthetic California provides a sensible approxi-
mation to the number of cigarette packs per capita that would
have been sold in California in 1989–2000 in the absence of
Proposition 99.

Our estimate of the effect of Proposition 99 on cigarette con-
sumption in California is the difference between per capita ciga-
rette sales in California and in its synthetic version after the pas-
sage of Proposition 99. Immediately after the law’s passage, the
two lines begin to diverge noticeably. While cigarette consump-
tion in the synthetic California continued on its moderate down-
ward trend, the real California experienced a sharp decline. The
discrepancy between the two lines suggests a large negative ef-
fect of Proposition 99 on per capita cigarette sales. Figure 3
plots the yearly estimates of the impacts of Proposition 99, that
is, the yearly gaps in per capita cigarette consumption between
California and its synthetic counterpart. Figure 3 suggests that
Proposition 99 had a large effect on per capita cigarette sales,
and that this effect increased in time. The magnitude of the es-
timated impact of Proposition 99 in Figure 3 is substantial. Our
results suggest that for the entire 1989–2000 period cigarette
consumption was reduced by an average of almost 20 packs per
capita, a decline of approximately 25%.

In order to assess the robustness of our results, we included
additional predictors of smoking prevalence among the vari-
ables used to construct the synthetic control. Our results stayed
virtually unaffected regardless of which and how many predic-
tor variables we included. The list of predictors used for robust-
ness checks included state-level measures of unemployment,
income inequality, poverty, welfare transfers, crime rates, drug
related arrest rates, cigarette taxes, population density, and nu-
merous variables to capture the demographic, racial, and social
structure of states.
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Nonlinear panel models

• Many features of the linear fixed effects model do not carry
over to nonlinear models.
• Here I focus on the binary outcome model as an example.
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Static binary choice panel model

• A static model:

Pr(yi | xi , ηi) =
T∏

t=1

F (β′xit + ηi)

• The model is “static” because there is no lagged dependent
variable.

• Justification of this form for the likelihood assumption
typically requires strictly exogenous regressors.
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Static binary choice panel model

• A static model.
• The log likelihood function is

`(β, {ηi}) =
n∑

i=1

T∑
t=1

log(F (β′xit + ηi ))

• The log of the integrated likelihood function is

¯̀(β) =
n∑

i=1

log

(∫ T∏
t=1

F (β′xit + ηi )fη|x (ηi | xi )dηi

)
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Static model

• Random effects models are based on the integrated
likelihood.
• Random effects probit/logit assume that fη|x = fη.

• Similar assumption to RE in linear models.
• Similarly, this is more efficient than a pooled probit/logit

estimator.
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Static model

• The Mundlak/Chamberlain/Wooldridge approach:
ηi = a′x̄i + ωi , or ηi is some other function of xi .
• Also known as the correlated random effects estimator.

• This is implemented using the integrated likelihood with
fη|x (ηi | xi ) = fω(ηi − a′x̄i )

• This reduces to∫ T∏
t=1

F (β′xit + a′x̄i + ωi )fω(ωi )dωi

• Cannot identify βk if xitk is time invariant.
• Unlike in linear models, this is not equivalent to a fixed

effects estimator – it is a substantive restriction.
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Static model

• Fixed effects models are based on the full likelihood,
`(β, {ηi})
• Treat the ηi as separate parameters.
• This introduces the incidental parameter problem (Neyman

and Scott, 1948).
• The fixed effects estimator is biased for a fixed T , but is

consistent as T →∞.
• If T and n are of similar magnitude, or T is smaller, then FE

doesn’t work.
• When T and n are of similar magnitude bias corrections

have been suggested (see work of Fernandez-Val and
others)
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Static model

• Conditional logit:
• In the logit model, when T = 2,

Pr(yi1 = 0, yi2 = 1 | yi1 +yi2 = 1, xi ) =
exp(x ′i1β)

exp(x ′i1β) + exp(x ′i2β)

• This conditional likelihood estimator is implemented in
Stata via clogit

• Not logit with i.caseid!!
• For larger T , condition on

∑T
t=1 yit .

• This approach works for dynamic logit and multinomial logit
models as well.
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Dynamic model

• A dynamic model:

Pr(yi | xi , ηi) =
T∏

t=1

Pr(yit | yi,t−1, xit , ηi)

• This model allows for two sources of serial dependence:
• heterogeneity due to individual effects, ηi
• state dependence, due to lagged y
• influential paper by Heckman (1981) noted that it is difficult

to separate these two effects in a binary outcome model
• Hyslop (1999) additionally allows for serially correlated

errors in a probit version of this model
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Dynamic model

• A dynamic model:

Pr(yi | xi , ηi) =
T∏

t=1

Pr(yit | yi,t−1, xit , ηi)

• (Correlated) random effects
• The initial conditions problem – need to specify fηi |xi ,yi0
• Mundlak/Chamberlain approach is common.
• What if yi0 is just the first observed period?
• Williams (2019) shows that this model can be extended to

allow nonstationarity and to treat the random effects
distribution nonparametrically.
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Dynamic model

• A dynamic model:

Pr(yi | xi , ηi) =
T∏

t=1

Pr(yit | yi,t−1, xit , ηi)

• Fixed effects
• same story as in static model

• Conditional logit
• T ≥ 4 required.
• Requires assumptions regarding initial conditions.
• Requires xit to not change over time for some entities.
• See Honore and Kyriazidou (2000).
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Linear probability model

• In practice a linear probability model is often used
• That is, yit = β′xit + ηi + νit , despite the fact that yit is binary.
• This allows for fixed effects, various types of endogeneity,

Arellano and Bond GMM estimator, etc.
• drawbacks?

• fails to account for heterogeneity induced by nonlinearity
• fixed effect is not really differenced out...
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