Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Lecture 13 – More on Panel Data

Economics 8379 George Washington University

Instructor: Prof. Ben Williams

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

The linear panel model

Basic model and assumptions:

$$\mathbf{y}_{it} = \beta' \mathbf{x}_{it} + \eta_i + \nu_{it}$$

A1
$$E(\nu_{i1}, ..., \nu_{iT} | x_{i1}, ..., x_{iT}, \eta_i) = 0$$

A2 $Var(\nu_{i1}, ..., \nu_{iT} | x_{i1}, ..., x_{iT}, \eta_i) = \sigma^2 I_T$

 These assumptions can be replaced by weaker but harder to interpret assumptions.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Differencing and within variation

• Some notation first:

•
$$y_i = (y_{i1}, \ldots, y_{iT})^i$$

•
$$x_i = (x_{i1}, \ldots, x_{iT})'$$

- $\nu_i = (\nu_{i1}, \ldots, \nu_{iT})'$
- The basic idea you've seen before:

$$\Delta y_{it} = \beta' \Delta x_{it} + \Delta \nu_{it}$$

and $E(\Delta \nu_{it} \mid \Delta x_{it}) = 0$

In matrix notation,

$$Dy_i = Dx_i\beta + D\nu_i$$

where D is the $(T - 1) \times T$ first difference operator.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Differencing and within variation

The fixed effects regression is not
 (∑_{i=1}ⁿ x_i'D'Dx_i)⁻¹ ∑_{i=1}ⁿ x_i'D'Dy_i, though this first
 differences estimator would be consistent under
 assumption A1.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- The fixed effects regression is *not* $(\sum_{i=1}^{n} x'_i D' Dx_i)^{-1} \sum_{i=1}^{n} x'_i D' Dy_i$, though this *first differences* estimator would be consistent under assumption A1.
- Because $Var(D\nu_i | x_i) = \sigma^2 DD'$, the GLS estimator is more efficient,

$$\hat{\beta}_{fe} := (\sum_{i=1}^{n} x'_{i} D' (DD')^{-1} Dx_{i})^{-1} \sum_{i=1}^{n} x'_{i} D' (DD')^{-1} Dy_{i}$$

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- But $Q = D'(DD')^{-1}D$ is idempotent and equal to $I_T \iota \iota'/T$. This is the within-group operator.
 - The fixed effects estimator is based on *within* variation.
 - The fixed effects estimator is equivalent to including entity dummies.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- Properties of the fixed effects (or within-group) estimator:
 - For a fixed T, $\hat{\beta}_{fe}$ is unbiased and optimal¹, and as $n \to \infty$ it is consistent and asymptotically normal.
 - Estimates of η_i are unbiased but only consistent if $T \to \infty$.
 - If $T \to \infty$ then $\hat{\beta}_{fe}$ is consistent, even if *n* is fixed.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

- Robust standard errors:
 - If A2 does not hold then the usual standard error formula for OLS on the transformed data is inconsistent.
 - If *T* is fixed and *n* is large then the clustered (on entity) standard error formula provides a HAC estimator.
 - If *T* is large and *n* is fixed then a Newey West type std error estimator is required for consistency under serial correlation.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Differencing and within variation

- Under serial correlation in ν_{it}, the fixed effects estimator is not optimal. Let ν_i^{*} = Dν_i.
 - Generally, if $Var(\nu_i^* | x_i) = \Omega(x_i)$ then the GLS estimator is

$$\left(\sum_{i=1}^n x_i' D' \Omega(x_i) Dx_i\right)^{-1} \sum_{i=1}^n x_i' D' \Omega(x_i) Dy_i$$

• In the special case where $Var(\nu_i^* | x_i) = \Omega$, replace $\Omega(x_i)$ with

$$\hat{\Omega} = n^{-1} \sum_{i=1}^{n} \hat{\nu}_i^* \hat{\nu}_i^{*\prime}$$

to get a feasible GLS estimator.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Random effects

Pooled OLS estimator is

$$\hat{\beta}_{pooled} = \left(\sum_{i=1}^{n} x_i' x_i\right) \sum_{i=1}^{n} x_i' y_i$$

- It's unbiased and consistent only under the assumption that *E*(η_ix_{it}) = 0.
- Under assumption A2 and $Var(\eta_i \mid x_i) = \sigma_{\eta_i}^2$,

$$Var(\eta_i\iota+\nu_i\mid x_i)=\sigma_{\eta}^2\iota\iota'+\sigma^2I_T$$

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Random effects

The GLS estimator is then

$$\hat{\beta}_{GLS} = \left(\sum_{i=1}^n x_i V^{-1} x_i'\right) \sum_{i=1}^n x_i V^{-1} y_i$$

where $V^{-1} = \sigma^{-2} \left(I_T - \sigma_\eta^2 \iota \iota' / (\sigma^2 + T \sigma_\eta^2) \right)$.

- This is the *random effects* estimator.
- When $T \to \infty$, this becomes the fixed effects estimator.
- More generally, if $\psi = \sigma_{\eta}^2 / (\sigma^2 + T \sigma_{\eta}^2)$ goes to 0 we get fixed effects and if ψ goes to 1 we get pooled OLS.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Random effects

- Feasible GLS
 - Estimate ψ in first stage to get estimate of \hat{V} .
 - Several ways to estimate ψ .
 - This is what xtreg ..., re in Stata does.
- An alternative is the maximum likelihood estimator that will estimate β and σ and σ²_n simultaneously.
 - the usual MLE assumes that η_i ~ N(0, σ_η²) though different distributions can be used.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Random effects vs fixed effects

- The primary difference between the two is that random effects assumes η_i is uncorrelated with x_{it}.
- The idea of fixed (non-random) versus random effects is not the real distinction.
- Mundlak (1978) showed that the fixed effects estimator is equivalent to a random effects type (GLS) estimator of the model where η_i = a' x
 _i + ω_i where ω_i is independent of x_i.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Extensions/practical issues

 inference – Bertrand et al. (2004); Bell and McCaffrey (2002); Cameron, Gelbach and Miller (2008); Imbens and Kolesar (2014)

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Extensions/practical issues

- inference Bertrand et al. (2004); Bell and McCaffrey (2002); Cameron, Gelbach and Miller (2008); Imbens and Kolesar (2014)
- heterogeneity what does DD/FE estimate?
 Goodman-Bacon (2018), Borusyak and Jaravel (2017), Callaway and Sant'Anna (2019)

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Extensions/practical issues

- inference Bertrand et al. (2004); Bell and McCaffrey (2002); Cameron, Gelbach and Miller (2008); Imbens and Kolesar (2014)
- heterogeneity what does DD/FE estimate? Goodman-Bacon (2018), Borusyak and Jaravel (2017), Callaway and Sant'Anna (2019)
- common trends synthetic control and interactive fixed effects

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Extensions/practical issues

- inference Bertrand et al. (2004); Bell and McCaffrey (2002); Cameron, Gelbach and Miller (2008); Imbens and Kolesar (2014)
- heterogeneity what does DD/FE estimate? Goodman-Bacon (2018), Borusyak and Jaravel (2017), Callaway and Sant'Anna (2019)
- common trends synthetic control and interactive fixed effects
- IV/GMM tradeoffs in specifying moment conditions
 - measurement error exacerbated by FE?
 - dynamic models
- large *n* or *T* or both?
- nonlinear models

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- Motivating example Bover and Watson (2000)
 - consider a simplified version of the model from Arellano (2003)
 - Conditional money demand equation:
 - *y_{it}* denotes cash holdings (real money balances) of firm *i* in year *t*
 - x_{it} denotes sales
 - η_i = -log(a_i) where a_i denotes a firm's "financial sophistication"

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- Suppose *x*_{it} = x_{it} + ε_{it} and the true regressor values, x_{it} are unobserved.
- Fixed effects can exacerbate measurement error bias:

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- Suppose *x*_{it} = x_{it} + ε_{it} and the true regressor values, x_{it} are unobserved.
- Fixed effects can exacerbate measurement error bias:
 - The measurement error bias in the FE estimator when T = 2 is $\beta \left(1 \frac{1}{1+\lambda}\right)$ where

$$\lambda = Var(\Delta \varepsilon_{it}) / Var(\Delta x_{it})$$

- If ε_{it} and x_{it} are both iid then this attentuation bias is identical to the cross-sectional bias.
- If *ε_{it}* is iid but *x_{it}* is positively serially correlated then the bias is *larger* than in the cross-section.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Measurement error

When T > 2, ε_{it} is iid and x_{it} is positively serially correlated

 Griliches and Hausman (1986) show that the bias of the fixed effects estimator lies between the bias of pooled OLS and that of OLS in first-differences.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Measurement error

- When *T* > 2, ε_{it} is iid and x_{it} is positively serially correlated

 Griliches and Hausman (1986) show that the bias of the fixed effects estimator lies between the bias of pooled OLS and that of OLS in first-differences.
- Panel IV can be a solution to the measurement error problem when ε_{it} is not serially correlated and x_{it} is.
 - If η_i is independent (random effects/pooled OLS model) then

$$E(\tilde{x}_{is}(y_{it}-\beta'\tilde{x}_{it}))=0$$

for $s \neq t$

Extensions/practical issues

actor models 000000000

Synthetic control analysis

Binary outcome models

Measurement error

 If η_i is correlated with x_{it}, one solution is to take first differences and use the moment conditions

$$E(\tilde{x}_{is}(\Delta y_{it} - \beta' \Delta \tilde{x}_{it})) = 0$$

for s = 1, ..., t - 2, t + 1, ..., T

- This requires $T \ge 3$.
- Also, the rank condition should be considered carefully. What if *x_{it}* is white noise? What is *x_{it}* is a random walk? What if *x_{it}* = α_i + ξ_{it}?
- With larger *T*, there is a tradeoff between allowing serial correlation in ε_{it} and needing serial correlation in x_{it}.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Measurement error

• Table from Bover and Watson (2000):

Table 4.1 Firm Money Demand Estimates Sample period 1986–1996							
	OLS Levels	OLS Orthogonal deviations	OLS 1st-diff.	GMM 1st-diff.	GMM 1st-diff. m. error	GMM Levels m. error	
Log sales	.72 (30.)	.56 (16.)	.45 (12.)	.49 (16.)	.99 (7.5)	.75 (35.)	
Log sales ×trend	02 (3.2)	03 (9.7)	03 (4.9)	03 (5.3)	03 (5.0)	03 (4.0)	
$\begin{array}{c} \text{Log sales} \\ \times \text{trend}^2 \end{array}$.001 (1.2)	.002 (6.6)	.001 (1.9)	.001 (2.0)	.001 (2.3)	.001 (1.4)	
Sargan (p-value)				.12	.39	.00	

All estimates include year dummies, and those in levels also include industry dummies. t-ratios in brackets robust to heteroskedasticity & serial correlation. N=5649. Source: Boyer and Watson (2000)

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- The relationship among the pooled OLS, FE, and first difference estimators is consistent with measurement error in sales.
- Column (4) is GMM on first differences using other time periods as instruments.
 - The Sargan test here is also marginally suggestive of measurement error.
- Columns (5) and (6) seem to correct for measurement error and are consistent with the expectation that pooled OLS should be downward biased.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

AR model with fixed effects

• Consider as a simple example the autoregressive model:

$$\mathbf{y}_{it} = \alpha \mathbf{y}_{i(t-1)} + \eta_i + \nu_{it}$$

B1
$$E(\nu_{it} | y_i^{t-1}, \eta_i) = 0$$

B2
$$E(\nu_{it}^2 \mid \mathbf{y}_i^{t-1}, \eta_i) = \sigma^2$$

- B3 (mean stationarity) $E(y_{i0} \mid \eta_i) = \eta_i / (1 \alpha)$
- B4 (covariance stationarity) $Var(y_{i0} \mid \eta_i) = \sigma^2/(1 \alpha^2)$
- The fixed effects estimator has a bias that is
 - equal to $-(1 + \alpha)/2$ when T = 2
 - approximately $-(1 + \alpha)/T$ for large T
- This is called the Nickell bias due to pioneering work of Nickell (1981).

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

AR model with fixed effects

- Without assumptions B3 and B4 the bias is more complicated.
 - E.g., if T = 2 and σ²_η/Var(ν_{i1}) is large then the bias is very small.
- What if T is large but the same order of magnitude as n?
 - Formally, if $n/T \rightarrow c > 0$ then

$$\sqrt{nT}(\hat{\alpha}_{fe} - \alpha) \approx N(-c(1 + \alpha), (1 - \alpha^2)/(nT))$$

• For moderate values of *T*, a bias-corrected estimator:

$$\hat{\alpha}_{\textit{fe,bc}} = \hat{\alpha}_{\textit{fe}} + \frac{1 + \hat{\alpha}_{\textit{fe}}}{T}$$

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

IV solution

• Anderson and Hsiao (1981, 1982) suggested using an IV estimator that uses $y_{i(t-2)}$ or $\Delta y_{i(t-2)}$ as an instrument for Δy_{it} when $T \ge 3$ or $T \ge 4$.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

IV solution

- Anderson and Hsiao (1981, 1982) suggested using an IV estimator that uses $y_{i(t-2)}$ or $\Delta y_{i(t-2)}$ as an instrument for Δy_{it} when $T \ge 3$ or $T \ge 4$.
- There are potentially many more moment conditions under assumption B1:

$$\mathsf{E}(y_i^{t-1}(\Delta y_{it} - \alpha \Delta y_{i(t-1)})) = \mathbf{0}, \quad t = 2, \dots, T$$

Extensions/practical issues

ctor models 5

Synthetic control analysis

Binary outcome models

IV solution

- Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991) suggest implementing a GMM estimator that uses all (T 1)T/2 moment conditions.
- The Arellano Bond estimator uses a one-step optimal weighting matrix that accounts for serial correlation due to differencing,

$$\hat{V} = \sum_{i=1}^{n} z_i' DD' z_i$$

• There is a bias however when $n \approx T$ that is proportional to 1/n.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

IV solution

- Advice:
 - When T is larger than n, use FE.
 - When *n* is larger than *T*, use Arellano-Bond.
 - When *n* is similar in magnitude to *T*, use bias-correction or limited number of instruments/moments.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

A factor model

Suppose that

$$Y_{it} = \lambda'_t \alpha_i + \varepsilon_{it}$$

- The α_i is a vector of common factors.
- The ε_{it} are idiosyncratic factors.
- The λ_t are factor loadings.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

A factor model

Identification based on:

$$Var(Y_i) = \Lambda Var(\alpha_i)\Lambda' + \Delta$$

under restrictions on Δ

- if T is small, Δ diagonal is typical restriction
- if T is large, we can do better

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

A factor model

Identification based on:

$$Var(Y_i) = \Lambda Var(\alpha_i)\Lambda' + \Delta$$

under restrictions on Δ

- if T is small, Δ diagonal is typical restriction
- if T is large, we can do better
- Normalizations needed:
 - For example, *E*(α_i) = 0 and *Var*(α_i) = *I* and Λ is lower triangular.
- See Anderson and Rubin (1954) and Williams (forthcoming, Ect. Rev.).

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

The "interactive fixed effects" model

• An extension of the twoway FE model:

$$Y_{it} = \beta' X_{it} + \lambda'_t \alpha_i + \varepsilon_{it}$$

Often a time FE is explicitly included,

$$Y_{it} = \beta' X_{it} + \lambda_{0t} + \lambda'_t \alpha_i + \varepsilon_{it}$$

• This is more general, more flexible than the "entity-specific trend" modelling approach.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

The "interactive fixed effects" model

- We will talk about several ways to estimate this model.
 - Bai (2009)
 - Ahn, Lee, and Schmidt (2013)
 - A new approach that Bob Phillips and I have been working on.
 - The synthetic control method.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Application

- Divorce rates and divorce law reforms.
 - Friedberg (1998) reforms lead to increased divorce rate, using FE/DD with state-specific quadratic trends
 - Wolfers (2006) cast doubt on these results, arguing in part that the state-specific quadratic trend method is not very robust
 - Kim and Oka (2014) applied Bai (2009)'s IFE estimator and found that results are more robust.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Bai (2009)'s "interactive fixed effects" estimator

 If *n* and *T* are both large then we can treat λ_t and α_i as parameters to be estimated.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Bai (2009)'s "interactive fixed effects" estimator

- If *n* and *T* are both large then we can treat λ_t and α_i as parameters to be estimated.
- The problem is to minimize

$$\sum_{i=1}^{n} \sum_{t=1}^{T} \left(Y_{it} - \beta' X_{it} - \lambda'_t \alpha_i \right)^2$$

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Bai (2009)'s "interactive fixed effects" estimator

- Bai (2009) suggests doing this by iterating the following two steps.
 - 1. Given $\{\lambda_t^{(s)}\}$ and $\{\alpha_i^{(s)}\}$, choose $\beta = \beta^{(s+1)}$ to minimize

$$\sum_{i=1}^{n} \sum_{t=1}^{T} \left(Y_{it} - \beta' X_{it} - \lambda_t^{(s)'} \alpha_i^{(s)} \right)^2$$

2. Given $\beta = \beta^{(s+1)}$, choose $\lambda_t = \lambda_t^{(s+1)}$ and $\alpha = \alpha_i^{(s+1)}$ to minimize

$$\sum_{i=1}^{n}\sum_{t=1}^{T}\left(Y_{it}-\beta^{(s+1)\prime}X_{it}-\lambda_{t}^{\prime}\alpha_{i}\right)^{2}$$

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Ahn, Lee, and Schmidt (2013)

- ALS (2013) propose a GMM estimation strategy based on quasi-differencing.
- This is easiest to see when α_i is scalar. In that case,

$$\mathbf{Y}_{it} - rac{\lambda_t}{\lambda_s} \mathbf{Y}_{is} = eta' \left(\mathbf{X}_{it} - rac{\lambda_t}{\lambda_s} \mathbf{X}_{is}
ight) + ilde{u}_{it}$$

 Under various exogeneity conditions we get moments such as

$$E\left(Z_{i\tau}\left(Y_{it}-\frac{\lambda_t}{\lambda_s}Y_{is}-\beta'\left(X_{it}-\frac{\lambda_t}{\lambda_s}X_{is}\right)\right)\right)=0$$

where $Z_{i\tau}$ can be $Y_{i\tau}$ or $X_{i\tau}$.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Ahn, Lee, and Schmidt (2013)

- The propose a two step optimal GMM estimator based on all valid moment conditions.
- Rank condition is not super transparent need to use the moments to identify β and λ_t.
- But this can work with fairly small *T*.
- One caveat: moment conditions proliferate as *T* increases, as in Arellano-Bond.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Phillips and Williams

• Define the linear projection,

$$\alpha_i = \psi' X_i + \xi_i,$$

where ξ_i is uncorrelated with X_i

Plugging this in we get

$$Y_{it} = \beta' X_{it} + \lambda'_t \psi' X_i + \lambda'_t \xi_i + \varepsilon_{it}$$

We propose a least squares estimator that minimizes

$$\sum_{i=1}^{n}\sum_{t=1}^{T}\left(Y_{it}-\beta'X_{it}-\lambda'_{t}\psi'X_{i}\right)^{2}$$

 This is similar to Bai (2009) except that in "step 2" we use a method to estimate λ_t and ψ that works with small *T*.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Synthetic control analysis

- Similar to matching-based estimators.
- The idea is to compare the treated state to a weighted average of control states.
- The weights are chosen to match covariates and past outcomes.
- Abadie et al. (2010) argue that this works under a general interactive fixed effects and time-varying coefficient specification

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Synthetic control analysis

- The method in principle:
 - Suppose states *s* = 1, ..., *S* are controls and state *S* + 1 is treated.
 - First, find nonnegative weights w₁,..., w_S that add up to 1 so that

$$\sum_{s=1}^{S} w_s X_s = X_{S+1}$$

and

$$\sum_{s=1}^{S} w_s Y_{st} = Y_{S+1,t}$$

for each period t before treatment occurs at T_0 .

• Then, for $t > T_0$, estimate the *TT* using these weights

$$Y_{S+1,t} - \sum_{s=1}^{S} w_s Y_{st}$$

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Synthetic control analysis

Suppose

$$Y_{0st} = \lambda_{0t} + \lambda'_{1t}\gamma_s + \beta'_t X_s + \varepsilon_{st}$$

- For large T_0 , the above method would ensure that γ_s and X_s are equal between S + 1 and the "synthetic control"
- So $Y_{0,S+1,T_0+1}, Y_{0,S+1,T_0+2}, ...$ are unbiased estimates of the counterfactuals.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Synthetic control analysis

- The method in practice:
 - First, find nonnegative weights w₁,..., w_S that add up to 1 so that

$$||X_1 - X_0W||$$

is minimized.

• Then, for $t > T_0$, estimate the *TT* using these weights

$$Y_{S+1,t} - \sum_{s=1}^{S} w_s Y_{st}$$

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Some key theoretical points about the estimator

- The method requires large T_0 .
- Ferman and Pinto (2016) show that the method is typically still biased, though it generally outperforms DiD.
- Requires the other states to be roughly comparable convex hull assumption.
 - If we allow more general weights, this is not necessary, but then results rely on extrapolation.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

 Inference – Abadie et al. (2010) propose formalizing a placebo test as a permutation test. basics Extensions/practical issues Factor

Synthetic control analysis

Binary outcome models

- Inference Abadie et al. (2010) propose formalizing a placebo test as a permutation test.
- choice of metric || · || -
 - $\sqrt{(X_1 X_0 W)' V(X_1 X_0 W)}$ where V is chosen to minimize prediction error
- Stata command: synth

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Synthetic control analysis

- Abadie et al. (2010)
 - Proposition 99 in California in 1988 to control tobacco consumption (increased tax and other measures).
 - Did this decrease tobacco consumption?
 - First state to do this and most states did not implement similar measures until 2000.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Synthetic control analysis

• Abadie et al. (2010)

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Synthetic control analysis

• Abadie et al. (2010)

State	Weight	State	Weight
Alabama	0	Montana	0.199
Alaska	-	Nebraska	0
Arizona	-	Nevada	0.234
Arkansas	0	New Hampshire	0
Colorado	0.164	New Jersey	-
Connecticut	0.069	New Mexico	0
Delaware	0	New York	-
District of Columbia	-	North Carolina	0
Florida	-	North Dakota	0
Georgia	0	Ohio	0
Hawaii	-	Oklahoma	0
Idaho	0	Oregon	-
Illinois	0	Pennsylvania	0
Indiana	0	Rhode Island	0
Iowa	0	South Carolina	0
Kansas	0	South Dakota	0
Kentucky	0	Tennessee	0
Louisiana	0	Texas	0
Maine	0	Utah	0.334
Maryland	-	Vermont	0
Massachusetts	-	Virginia	0
Michigan	-	Washington	-
Minnesota	0	West Virginia	0
Mississippi	0	Wisconsin	0
Missouri	0	Wyoming	0

Table 2. State weights in the synthetic California

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Synthetic control analysis

• Abadie et al. (2010)

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Nonlinear panel models

- Many features of the linear fixed effects model do not carry over to nonlinear models.
- Here I focus on the binary outcome model as an example.

Extensions/practical issue

actor models

Synthetic control analysis

Binary outcome models

Static binary choice panel model

• A static model:

$$Pr(y_i \mid x_i, \eta_i) = \prod_{t=1}^T F(\beta' x_{it} + \eta_i)$$

- The model is "static" because there is no lagged dependent variable.
- Justification of this form for the likelihood assumption typically requires strictly exogenous regressors.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Static binary choice panel model

- A static model.
 - The log likelihood function is

$$\ell(\beta, \{\eta_i\}) = \sum_{i=1}^n \sum_{t=1}^T \log(F(\beta' x_{it} + \eta_i))$$

The log of the integrated likelihood function is

$$\bar{\ell}(\beta) = \sum_{i=1}^{n} \log \left(\int \prod_{t=1}^{T} F(\beta' x_{it} + \eta_i) f_{\eta|x}(\eta_i \mid x_i) d\eta_i \right)$$

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- Random effects models are based on the integrated likelihood.
 - Random effects probit/logit assume that $f_{\eta|x} = f_{\eta}$.
 - Similar assumption to RE in linear models.
 - Similarly, this is more efficient than a pooled probit/logit estimator.

Extensions/practical issues

models Synthe

Synthetic control analysis

Binary outcome models

- The Mundlak/Chamberlain/Wooldridge approach:
 - $\eta_i = a' \bar{x}_i + \omega_i$, or η_i is some other function of x_i .
- Also known as the correlated random effects estimator.
 - This is implemented using the integrated likelihood with $f_{\eta|x}(\eta_i \mid x_i) = f_{\omega}(\eta_i a'\bar{x}_i)$
 - This reduces to

$$\int \prod_{t=1}^{T} F(\beta' \mathbf{x}_{it} + \mathbf{a}' \bar{\mathbf{x}}_i + \omega_i) f_{\omega}(\omega_i) d\omega_i$$

- Cannot identify β_k if x_{itk} is time invariant.
- Unlike in linear models, this is *not* equivalent to a fixed effects estimator it is a substantive restriction.

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- Fixed effects models are based on the full likelihood, $\ell(\beta, \{\eta_i\})$
 - Treat the η_i as separate parameters.
 - This introduces the incidental parameter problem (Neyman and Scott, 1948).
 - The fixed effects estimator is biased for a fixed T, but is consistent as $T \to \infty$.
 - If *T* and *n* are of similar magnitude, or *T* is smaller, then FE doesn't work.
 - When T and n are of similar magnitude bias corrections have been suggested (see work of Fernandez-Val and others)

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

- Conditional logit:
 - In the logit model, when T = 2,

$$Pr(y_{i1} = 0, y_{i2} = 1 | y_{i1} + y_{i2} = 1, x_i) = \frac{\exp(x'_{i1}\beta)}{\exp(x'_{i1}\beta) + \exp(x'_{i2}\beta)}$$

- This conditional likelihood estimator is implemented in Stata via clogit
- Not logit with i.caseid!!
- For larger T, condition on $\sum_{t=1}^{T} y_{it}$.
- This approach works for dynamic logit and multinomial logit models as well.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Dynamic model

• A dynamic model:

$$Pr(y_i \mid x_i, \eta_i) = \prod_{t=1}^{T} Pr(y_{it} \mid y_{i,t-1}, x_{it}, \eta_i)$$

- This model allows for two sources of serial dependence:
 - heterogeneity due to individual effects, η_i
 - state dependence, due to lagged y
 - influential paper by Heckman (1981) noted that it is difficult to separate these two effects in a binary outcome model
 - Hyslop (1999) additionally allows for serially correlated errors in a probit version of this model

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Dynamic model

• A dynamic model:

$$Pr(y_i \mid x_i, \eta_i) = \prod_{t=1}^{T} Pr(y_{it} \mid y_{i,t-1}, x_{it}, \eta_i)$$

- (Correlated) random effects
 - The initial conditions problem need to specify f_{ni|xi,yi0}
 - Mundlak/Chamberlain approach is common.
 - What if y_{i0} is just the first observed period?
 - Williams (2019) shows that this model can be extended to allow nonstationarity and to treat the random effects distribution nonparametrically.

Extensions/practical issue

Factor models

Synthetic control analysis

Binary outcome models

Dynamic model

• A dynamic model:

$$Pr(y_i \mid x_i, \eta_i) = \prod_{t=1}^{T} Pr(y_{it} \mid y_{i,t-1}, x_{it}, \eta_i)$$

- Fixed effects
 - same story as in static model
- Conditional logit
 - $T \ge 4$ required.
 - Requires assumptions regarding initial conditions.
 - Requires *x_{it}* to not change over time for some entities.
 - See Honore and Kyriazidou (2000).

Extensions/practical issues

Factor models

Synthetic control analysis

Binary outcome models

Linear probability model

- In practice a linear probability model is often used
 - That is, $y_{it} = \beta' x_{it} + \eta_i + \nu_{it}$, despite the fact that y_{it} is binary.
 - This allows for fixed effects, various types of endogeneity, Arellano and Bond GMM estimator, etc.
 - drawbacks?
 - fails to account for heterogeneity induced by nonlinearity
 - fixed effect is not really differenced out...