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Lecture 13 — More on Panel Data
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George Washington University

Instructor: Prof. Ben Williams
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The linear panel model

e Basic model and assumptions:

Vit = B'Xit + i + vie

Al E(vi,...,viT | Xit, ..., XiT,mi) =0
A2 Var(vjr,...,vir | X, ..., Xir,ni) = o?lt

Binary outcome models
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* These assumptions can be replaced by weaker but harder

to interpret assumptions.



Some basics Extensions/practical issues Factor models Synthetic control analysis Binary outcome models
0@000000000 000000000000 0000000000 0000000000 00000000000

Differencing and within variation

e Some notation first:
* yi=Wn,....yr)
* Xi=(Xi1,...,x1)
* vi=n,...,vr)

* The basic idea you've seen before:

Ay = B'Axip + Avjg
and E(AV” | AX,‘t) =0

® |n matrix notation,
Dy; = Dxj3 + Dv;

where D is the (T — 1) x T first difference operator.
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Differencing and within variation

¢ The fixed effects regression is not
(>, x/D'Dx;)~" S°IL, x/ D' Dy;, though this first
differences estimator would be consistent under
assumption A1.
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Differencing and within variation

¢ The fixed effects regression is not
(>, x/D'Dx;)~" S°IL, x/ D' Dy;, though this first
differences estimator would be consistent under
assumption A1.

* Because Var(Dv; | x;) = 02DD’, the GLS estimator is more
efficient,

n n
bre:=()_x/D'(DD')""Dx;)~' Y _ x/D'(DD')~" Dy,

i=1 i=1



Some basics Extensions/practical issues

Binary outcome models
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e But Q = D'/(DD')~ "D is idempotent and equal to I+ — «//T.
This is the within-group operator.
* The fixed effects estimator is based on within variation.
® The fixed effects estimator is equivalent to including entity
dummies.
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Differencing and within variation

e Properties of the fixed effects (or within-group) estimator:
* For afixed T, B is unbiased and optimal', and as n — ~c it
is consistent and asymptotically normal.
¢ Estimates of »; are unbiased but only consistent if T — oc.
e If T — oo then f is consistent, even if n is fixed.
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Differencing and within variation

® Robust standard errors:

* If A2 does not hold then the usual standard error formula for
OLS on the transformed data is inconsistent.

e |f T is fixed and nis large then the clustered (on entity)
standard error formula provides a HAC estimator.

e If T is large and nis fixed then a Newey West type std error
estimator is required for consistency under serial
correlation.
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Differencing and within variation

e Under serial correlation in vy, the fixed effects estimator is
not optimal. Let v = Dy;.

® Generally, if Var(v; | x;) = Q(x;) then the GLS estimator is

n -1 5
i=1

i=1

* In the special case where Var(v; | x;) = Q, replace Q(x;)

with
" 71 Z A*A*/

to get a feasible GLS estimator.
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Random effects

e Pooled OLS estimator is
n n
Bpooled = (Z Xi,Xi> inl}/i
=1 i=1

e |t's unbiased and consistent only under the assumption
that E(n,'X,'t) =0.

* Under assumption A2 and Var(n; | x;) = o2,

Var(nic + v | x;) = asu' + o2y
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Random effects

e The GLS estimator is then

n n
BaLs = (Z XiV1Xf> > oxiVly,

i=1 i=1

where V' =72 (It — o2u//(0® + To2)).
® This is the random effects estimator.
* When T — oo, this becomes the fixed effects estimator.
* More generally, if v = 02 /(2 4 To2) goes to 0 we get fixed
effects and if ) goes to 1 we get pooled OLS.
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Random effects

¢ Feasible GLS
e Estimate v in first stage to get estimate of v.
® Several ways to estimate .
® This is what xtreg ..., rein Stata does.
e An alternative is the maximum likelihood estimator that will
estimate 5 and o and 0—5 simultaneously.

* the usual MLE assumes that n; ~ N(0, 02) though different
distributions can be used.
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Random effects vs fixed effects

* The primary difference between the two is that random
effects assumes n; is uncorrelated with x.

* The idea of fixed (non-random) versus random effects is
not the real distinction.

e Mundlak (1978) showed that the fixed effects estimator is
equivalent to a random effects type (GLS) estimator of the
model where 7n; = & X; + w; where w; is independent of x;.
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Extensions/practical issues

¢ inference — Bertrand et al. (2004); Bell and McCaffrey
(2002); Cameron, Gelbach and Miller (2008); Imbens and
Kolesar (2014)
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Extensions/practical issues

¢ inference — Bertrand et al. (2004); Bell and McCaffrey
(2002); Cameron, Gelbach and Miller (2008); Imbens and
Kolesar (2014)

® heterogeneity — what does DD/FE estimate?
Goodman-Bacon (2018), Borusyak and Jaravel (2017),
Callaway and Sant’Anna (2019)
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Extensions/practical issues

inference — Bertrand et al. (2004); Bell and McCaffrey
(2002); Cameron, Gelbach and Miller (2008); Imbens and
Kolesar (2014)

heterogeneity — what does DD/FE estimate?
Goodman-Bacon (2018), Borusyak and Jaravel (2017),
Callaway and Sant’Anna (2019)

common trends — synthetic control and interactive fixed
effects
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Extensions/practical issues

inference — Bertrand et al. (2004); Bell and McCaffrey
(2002); Cameron, Gelbach and Miller (2008); Imbens and
Kolesar (2014)

heterogeneity — what does DD/FE estimate?
Goodman-Bacon (2018), Borusyak and Jaravel (2017),
Callaway and Sant’Anna (2019)

common trends — synthetic control and interactive fixed
effects

IV/GMM - tradeoffs in specifying moment conditions

® measurement error — exacerbated by FE?
® dynamic models

large nor T or both?
nonlinear models
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Measurement error

¢ Motivating example — Bover and Watson (2000)

e consider a simplified version of the model from Arellano
(2003)
® Conditional money demand equation:
® y; denotes cash holdings (real money balances) of firm i in
year t
® x; denotes sales
* n; = —log(a;) where a; denotes a firm’s “financial
sophistication”
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Measurement error

e Suppose Xi = Xj + ¢jr and the true regressor values, x;; are
unobserved.
e Fixed effects can exacerbate measurement error bias:
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Measurement error

e Suppose Xi = Xj + ¢jr and the true regressor values, x;; are
unobserved.
* Fixed effects can exacerbate measurement error bias:
®* The measurement error bias in the FE estimator when

T:2isﬁ(1 —11—/\> where

A = Var(Aey)/ Var(Axi)

® |f ¢4 and x; are both iid then this attentuation bias is identical
to the cross-sectional bias.

® [f g is iid but x; is positively serially correlated then the bias
is larger than in the cross-section.
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Measurement error

e When T > 2, ¢ is iid and x;; is positively serially correlated
— Griliches and Hausman (1986) show that the bias of the
fixed effects estimator lies between the bias of pooled OLS
and that of OLS in first-differences.
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Measurement error

e When T > 2, ¢ is iid and x;; is positively serially correlated
— Griliches and Hausman (1986) show that the bias of the
fixed effects estimator lies between the bias of pooled OLS
and that of OLS in first-differences.

e Panel IV can be a solution to the measurement error
problem when ¢j is not serially correlated and x; is.

*® If 5; is independent (random effects/pooled OLS model)
then

E(Xis(yit — 8'%)) =0
fors#t
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Measurement error

e [f n; is correlated with xj;, one solution is to take first
differences and use the moment conditions

E(Xis(Ayi — ' AXit)) =0

fors=1,....t—2,t+1,...,T
® This requires T > 3.
® Also, the rank condition should be considered carefully.
What if x;; is white noise? What is x; is a random walk?
What if X = a;j + £;?
e With larger T, there is a tradeoff between allowing serial
correlation in ; and needing serial correlation in x;.
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Factor models
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Measurement error

¢ Table from Bover and Watson (2000):

Log sales
x trend

1 r onloe
LOg sales

X trend*

Sargan

‘-\“ihk‘\

OLS

Levels

o

(30.)

-.02
(3.2)

.001
(L2)

Table 4
Firm Money Demand Estimates

Sample period 19861996

OLS

Orthogonal

deviations
00

(16.)

-.03
(9.7)

002
(6.6)

OLS
Lst-diff,

A5

(12.)

03
(4.9)

001
(1.9)

GMM
Lst-difl,

03
(5.3)

001
(2.0)

Synthetic control analysis
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MM
Lut-dliff,

YN
03
(5.0

001
(2.3)

39

orror

Binary outcome models
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GMM

Liovels

m, errox
™

(36.)

03
(4.0)

001
(1.4)

.00

\LT estimates mnclude year dumum-\ and those in levels also include industy y

dummies. f-ratios in brackets robust to he steroskedasticity & serial correlation

N

049, Source:

Rover

and Wataean {2000\
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Measurement error

¢ The relationship among the pooled OLS, FE, and first
difference estimators is consistent with measurement error
in sales.

e Column (4) is GMM on first differences using other time
periods as instruments.

® The Sargan test here is also marginally suggestive of
measurement error.

e Columns (5) and (6) seem to correct for measurement
error and are consistent with the expectation that pooled
OLS should be downward biased.
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AR model with fixed effects

e Consider as a simple example the autoregressive model:
Yit = aYit—1) +ni + Vit
B1 E(vic|y{™' m) =0
B2 E(WZ |y m) = o?
B3 (mean stationarity) E(yio | ni) = ni/(1 — @)
B4 (covariance stationarity) Var(yio | i) = 02/(1 — o?)
¢ The fixed effects estimator has a bias that is
® equalto —(1+a)/2when T =2
® approximately —(1 + «)/T for large T
¢ This is called the Nickell bias due to pioneering work of
Nickell (1981).
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AR model with fixed effects

¢ Without assumptions B3 and B4 the bias is more
complicated.

e Eg.,if T=2and afl/Var(un) is large then the bias is very
small.

e What if T is large but the same order of magnitude as n?
e Formally, if n/T — ¢ > 0then

VnT (4 — a) = N(—c(1 + ), (1 — a?)/(nT))
® For moderate values of T, a bias-corrected estimator:

1+6[fe
T

6Zfe,bc = 6él‘e +
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IV solution

e Anderson and Hsiao (1981, 1982) suggested using an IV
estimator that uses yj;_z) or Ayj_») as an instrument for
Ayiwhen T >3or T > 4.
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IV solution

e Anderson and Hsiao (1981, 1982) suggested using an IV
estimator that uses yj;_z) or Ayj_») as an instrument for
Ayiwhen T >3or T > 4.

* There are potentially many more moment conditions under
assumption B1:

E(y! " (Ayi — alyji-1))) =0, t=2,...,T
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IV solution

e Holtz-Eakin, Newey, and Rosen (1988) and Arellano and
Bond (1991) suggest implementing a GMM estimator that
uses all (T — 1) T /2 moment conditions.

e The Arellano Bond estimator uses a one-step optimal
weighting matrix that accounts for serial correlation due to
differencing,

n
V= Z z;DD'z;
i=1

e There is a bias however when n =~ T that is proportional to
1/n.
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IV solution

e Advice:
e When T is larger than n, use FE.
® When nis larger than T, use Arellano-Bond.

® When nis similar in magnitude to T, use bias-correction or
limited number of instruments/moments.
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A factor model

e Suppose that
Yie = Naj + eir

® The «; is a vector of common factors.
® The ¢ are idiosyncratic factors.
® The )\; are factor loadings.

Binary outcome models
00000000000
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A factor model

¢ |dentification based on:
Var(Y;) = AVar(o)N + A

under restrictions on A

e if T is small, A diagonal is typical restriction
e if T is large, we can do better

Binary outcome models
00000000000
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A factor model

¢ |dentification based on:
Var(Y;) = AVar(o)N + A

under restrictions on A
e if T is small, A diagonal is typical restriction
e if T is large, we can do better
¢ Normalizations needed:
® For example, E(«;) = 0 and Var(«;) =/ and A is lower
triangular.
e See Anderson and Rubin (1954) and Williams
(forthcoming, Ect. Rev.).
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The “interactive fixed effects” model

e An extension of the twoway FE model:
Yir = B'Xit + Nyevi + €t
e Often a time FE is explicitly included,
Yie = B'Xit + Aot + N + it

e This is more general, more flexible than the “entity-specific
trend” modelling approach.
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The “interactive fixed effects” model

e We will talk about several ways to estimate this model.
* Bai (2009)
® Ahn, Lee, and Schmidt (2013)
* A new approach that Bob Phillips and | have been working
on.
* The synthetic control method.
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Application

e Divorce rates and divorce law reforms.

® Friedberg (1998) — reforms lead to increased divorce rate,
using FE/DD with state-specific quadratic trends

* Wolfers (2006) cast doubt on these results, arguing in part
that the state-specific quadratic trend method is not very
robust

® Kim and Oka (2014) applied Bai (2009)’s IFE estimator and
found that results are more robust.
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Bai (2009)’s “interactive fixed effects” estimator

e [f nand T are both large then we can treat \; and «o; as
parameters to be estimated.
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Bai (2009)’s “interactive fixed effects” estimator

e [f nand T are both large then we can treat \; and «o; as
parameters to be estimated.

® The problem is to minimize

T

ZZ it — B Xit — ta/)

i=1 t=1
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Bai (2009)’s “interactive fixed effects” estimator

e Bai (2009) suggests doing this by iterating the following
two steps.

1. Given {A\*} and {o{®}, choose 8 = 3" to minimize

.
S5 (Y- 8% - A’

i=1 t=1
2. Given g = (s*1, choose A = AV and o = !* 1o
minimize

;
z”: Z (Yit — Bl X — /\§Oéi)z

i=1 t=1
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Ahn, Lee, and Schmidt (2013)

e ALS (2013) propose a GMM estimation strategy based on
quasi-differencing.

® This is easiest to see when «; is scalar. In that case,
A A -
Yi— S Yie = B ( X — S Xis ) + Ui
A As

S

e Under various exogeneity conditions we get moments such

as
A A
E(Z (Yi—ZtYis— 8 (Xe— X)) ) =0
As As

where Z;. can be Y, or X,.



Factor models
00000000 e0

Ahn, Lee, and Schmidt (2013)

The propose a two step optimal GMM estimator based on
all valid moment conditions.

Rank condition is not super transparent — need to use the
moments to identify 5 and ;.

But this can work with fairly small T.

One caveat: moment conditions proliferate as T increases,
as in Arellano-Bond.
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Phillips and Williams
Define the linear projection,
aj =YX+ ¢,
where &; is uncorrelated with X;
Plugging this in we get
Yie = B'Xip + X' Xi + N + eie
We propose a least squares estimator that minimizes
n T
SN (Vi 8% - A X)?
i=1 t=1

This is similar to Bai (2009) except that in “step 2” we use a
method to estimate A\; and « that works with small T.
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Synthetic control analysis

Similar to matching-based estimators.

The idea is to compare the treated state to a weighted
average of control states.

The weights are chosen to match covariates and past
outcomes.

Abadie et al. (2010) argue that this works under a general
interactive fixed effects and time-varying coefficient
specification
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Synthetic control analysis

® The method in principle:

® Suppose states s =1,..., S are controls and state S + 1 is
treated.

® First, find nonnegative weights wy, ..., ws that add up to 1
so that

s
Z WsXs = Xs41
s=1
and

S
Z WsYst = YS+1,t
s=1

for each period t before treatment occurs at To.
® Then, for t > Ty, estimate the TT using these weights

S
Ysi,t — Z Ws Yt

s=1
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Synthetic control analysis

® Suppose
Yost = Aot + >\,1 s + ﬁ;xs + st
e For large Ty, the above method would ensure that v5 and
Xs are equal between S + 1 and the “synthetic control”

® S0 Yo 541,79+15 Y0,5+1,To+2; --- are unbiased estimates of
the counterfactuals.



Some basics Extensions/practical issues Factor models Synthetic control analysis Binary outcome models
00000000000 000000000000 0000000000 000®000000 00000000000

Synthetic control analysis

e The method in practice:
¢ First, find nonnegative weights wy, ..., ws that add up to 1
so that
[1X1 — Xo W
is minimized.
® Then, for t > Ty, estimate the TT using these weights

S
YS+1,t - Z Ws Yst

s=1
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Some key theoretical points about the estimator

e The method requires large Tg.
¢ Ferman and Pinto (2016) show that the method is typically
still biased, though it generally outperforms DiD.

® Requires the other states to be roughly comparable —
convex hull assumption.

¢ |f we allow more general weights, this is not necessary, but
then results rely on extrapolation.



Synthetic control analysis
00000@0000

¢ Inference — Abadie et al. (2010) propose formalizing a
placebo test as a permutation test.
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¢ Inference — Abadie et al. (2010) propose formalizing a
placebo test as a permutation test.

¢ choice of metric |-l =
J \/ X1 — XoW) V(X; — XoW) where V is chosen to
minimize predlct|on error

e Stata command: synth
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Synthetic control analysis

e Abadie et al. (2010)
® Proposition 99 in California in 1988 to control tobacco
consumption (increased tax and other measures).
¢ Did this decrease tobacco consumption?
® First state to do this and most states did not implement
similar measures until 2000.
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Synthetic control analysis
e Abadie et al. (2010)
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Synthetic control analysis

e Abadie et al. (2010)

Table 2. State weights in the synthetic California

Synthetic control analysis
0000000080

State Weight State Weight
Alabama 0 Montana 0.199
Alaska - Nebraska 0
Arizona - Nevada 0.234
Arkansas 0 New Hampshire 0
Colorado 0.164 New Jersey -
Connecticut 0.069 New Mexico 0
Delaware 0 New York -
District of Columbia - North Carolina 0
Florida - North Dakota 0
Georgia 0 Ohio 0
Hawaii - Oklahoma 0
Idaho 0 Oregon -
Tllinois 0 Pennsylvania 0
Indiana 0 Rhode Island 0
Towa 0 South Carolina 0
Kansas 0 South Dakota 0
Kentucky 0 Tennessee 0
Louisiana 0 Texas 0
Maine 0 Utah 0.334
Maryland - Vermont 0
Massachusetts - Virginia 0
Michigan - Washington -
Minnesota 0 ‘West Virginia 0
Mississippi 0 Wisconsin 0
Missouri 0 Wyoming 0

Binary outcome models
00000000000
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Synthetic control analysis
e Abadie et al. (2010)
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Nonlinear panel models

e Many features of the linear fixed effects model do not carry
over to nonlinear models.

¢ Here | focus on the binary outcome model as an example.
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Static binary choice panel model

e A static model:

Pry; | xi,m) = [ [ F(8'%i +m)
=1

® The model is “static” because there is no lagged dependent
variable.

e Justification of this form for the likelihood assumption
typically requires strictly exogenous regressors.
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Static binary choice panel model

e A static model.
* The log likelihood function is

57 {771 _Zzl()g Bxlt+"7/))

i=1 t=1

® The log of the integrated likelihood function is

n T
B)=>log (/H F(B'xit + mi)fy1x(ni | Xi)dm‘)
i=1 t=1
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Static model

¢ Random effects models are based on the integrated
likelihood.
* Random effects probit/logit assume that f,,, = f,.
e Similar assumption to RE in linear models.
® Similarly, this is more efficient than a pooled probit/logit
estimator.
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Static model

¢ The Mundlak/Chamberlain/Wooldridge approach:
n; = aX; + wj, or n; is some other function of x;.
* Also known as the correlated random effects estimator.
® This is implemented using the integrated likelihood with
fox(ni | Xi) = fu(ni — a'x)
® This reduces to

;
/H F(B'xit + & Xi + wi) £, (wi) dwi
t=1

e Cannot identify Sk if Xy is time invariant.
® Unlike in linear models, this is not equivalent to a fixed
effects estimator — it is a substantive restriction.
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Static model

¢ Fixed effects models are based on the full likelihood,

* Treat the n; as separate parameters.

* This introduces the incidental parameter problem (Neyman
and Scott, 1948).

® The fixed effects estimator is biased for a fixed T, but is
consistentas T — oc.

e |f T and n are of similar magnitude, or T is smaller, then FE
doesn’t work.

e When T and n are of similar magnitude bias corrections
have been suggested (see work of Fernandez-Val and
others)
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Static model

¢ Conditional logit:
® |n the logit model, when T = 2,

exp(X,-'1 ﬁ)
exp(X; 8) + exp(Xj5)

Priyn =0,ypo=1|yi+Ye=1,X)=

® This conditional likelihood estimator is implemented in
Stata via clogit

® Not logit with i.caseidll

® For larger T, condition on Z; Vit

® This approach works for dynamic logit and multinomial logit
models as well.
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Dynamic model

e A dynamic model:

-
Pryi | xi,m) = [T Pr(vie | Yie—1, Xi:mi)
=1

* This model allows for two sources of serial dependence:

heterogeneity due to individual effects, »;

state dependence, due to lagged y

influential paper by Heckman (1981) noted that it is difficult
to separate these two effects in a binary outcome model
Hyslop (1999) additionally allows for serially correlated
errors in a probit version of this model
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Dynamic model

e A dynamic model:

-
Pryi | xi,m) = [T Pr(vie | Yie—1, Xi:mi)
=1

® (Correlated) random effects

The initial conditions problem — need to specify £, x .,
Mundlak/Chamberlain approach is common.

What if yjo is just the first observed period?

Williams (2019) shows that this model can be extended to
allow nonstationarity and to treat the random effects
distribution nonparametrically.
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Dynamic model

e A dynamic model:

—

Pr(yi | xi,ni) H r(Yit | Yit— 1, Xits 1)

* Fixed effects
® same story as in static model
® Conditional logit
® T > 4 required.
® Requires assumptions regarding initial conditions.
® Requires x; to not change over time for some entities.
® See Honore and Kyriazidou (2000).
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Linear probability model

e |n practice a linear probability model is often used
® Thatis, yiy = 8'xi + n;j + vir, despite the fact that y; is binary.
* This allows for fixed effects, various types of endogeneity,
Arellano and Bond GMM estimator, etc.
e drawbacks?
® fails to account for heterogeneity induced by nonlinearity
* fixed effect is not really differenced out...
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