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Motivation - Differencing

• Regression discontinuity is based on the idea that we
sometimes have available an instrument that works
“locally” but not globally.

• Consider the following motivating example...
• The point of this example is to start with something that

may be more familiar – a panel data setting.
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Motivation - Differencing

• Let Dt be a dummy indicating periods after a policy
change, Dt = 1(t > t0).
• Consider estimating the effect of a policy change using the

regression model

Yit = τDt + λt + uit

using only entities i that institute the policy change in
period t0



Introduction Estimation in RDD Identification RDD implementation RDD example

Motivation - Differencing

• We can only do this under restrictions on the λt .
• For example, if λt0 = λt0+1 then τ = E(Yi,t0+1)− E(Yi,t0)
• A simple “before-after” estimator doesn’t include the λts at

all so that τ = E(Yit | Dt = 1)− E(Yit | Dt = 0).
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Motivation - IV

• Let Zt = t .
• We can use this as an instrument and define various Wald

estimators:

E(Yit | Zt = z ′)− E(Yit | Zt = z)
E(Dt | Zt = z ′)− E(Dt | Zt = z)

• If time is exogenous in the model then Yit = λ+ τDt + uit
and all of the Wald estimators with a nonzero denominator
are consistent estimators for τ .
• 2SLS will be consistent too.
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Motivation - IV

• If Yit = λt + τDt + uit then time is not exogenous.
• But

E(Yit | Zt = t0 + 1)− E(Yit | Zt = t0)
E(Dt | Zt = t0 + 1)− E(Dt | Zt = t0)

= τ + λt0+1 − λt0
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Regression discontinuity.

• Consider estimation of the causal effect of Di on Yi . (no
time subscripts now)
• Suppose Pr(Di = 1 | Zi = z) = 1 for z > z0 and

Pr(Di = 1 | Zi = z) = 0 for z ≤ z0
• The sharp RD estimand is

τ := lim
z→z+

0

E(Y | Z = z)− lim
z→z−

0

E(Y | Z = z)
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Regression discontinuity

• Consider estimation of the causal effect of Di on Yi . (no
time subscripts now)
• Suppose Pr(Di = 1 | Zi = z) is discontinuous as a function

of z at z0.
• The fuzzy RD estimand is

τ :=
limz→z+

0
E(Y | Z = z)− limz→z−

0
E(Y | Z = z)

limz→z+
0

Pr(D = 1 | Z = z)− limz→z−
0

Pr(D = 0 | Z = z)
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Regression discontinuity

• When this potentially works
• There is a substantial “jump” in treatment probabilities

Pr(Di = 1 | Zi = z).
• Zi is exogenous near z0 – allows for endogeneity but not

bunching
• Sufficient data near z0.
• Y would vary continuously with Z at z0 if there is no causal

effect.
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Examples

Journal of Economic Literature, Vol. XLVIII (June 2010)340

TABLE 5 (continued)
Regression Discontinuity Applications in Economics

Study Context Outcome(s) Treatment(s) Assignment variable(s)

Jacob and Lefgren (2004b) Elementary schools, 
 Chicago 

Test scores Summer school  
 attendance, grade 
 retention 

Standardized test 
 scores

Leuven, Lindahl,  
 Oosterbeek, and  
 Webbink (2007) 

Primary schools,  
 Netherlands 

Test scores Extra funding Percent disadvantaged 
 minority pupils

Matsudaira (2008) Elementary schools, 
 Northeastern United 
 States 

Test scores Summer school,  
 grade promotion 

Test scores

Urquiola (2006) Elementary schools, 
 Bolivia 

Test scores Class size Student enrollment

Urquiola and  
 Verhoogen (2009)

Class size sorting- RD 
 violations, Chile

Test scores Class size Student enrollment 

Van der Klaauw  
 (2002, 1997) 

College enrollment,  
 East Coast College 

Enrollment Financial Aid offer SAT scores, GPA

Van der Klaauw (2008a) Elementary/middle 
 schools, New York  
 City 

Test scores,  
 student attendance 

Title I federal funding Poverty rates

Labor Market 

Battistin and Rettore  
 (2002) 

Job training, Italy Employment rates Training program  
 (computer skills) 

Attitudinal test score

Behaghel, Crepon,  
 and Sedillot (2008)

Labor laws, France Hiring among age  
 groups 

Tax exemption for  
 hiring firm 

Age of worker 

Black, Smith, Berger, and 
 Noel (2003); Black, 
 Galdo, and Smith (2007b) 

UI claimants, Kentucky Earnings, benefit  
 receipt/duration 

Mandatory reemploy- 
 ment services (job 
 search assistance) 

Profiling score 
 (expected benefit 
 duration)

 Card, Chetty,  
 and Weber (2007) 

 Unemployment  
 benefits, Austria 

Unemployment  
 duration 

Lump-sum severance  
 pay, extended UI 
 benefits 

Months employed,  
 job tenure

Chen and van der Klaauw 
(2008) 

Disability insurance  
 beneficiaries,  
 United States 

Labor force  
 participation 

Disability insurance 
 benefits 

Age at disability 
 decision

De Giorgi (2005) Welfare-to-work  
 program, United 
 Kingdom 

Re-employment  
 probability 

Job search assistance, 
 training, education 

Age at end of  
 unemployment spell

DiNardo and Lee (2004) Unionization,  
 United States 

Wages, employment, 
 output 

Union victory in NLRB 
 election 

Vote share

Dobkin and  
 Ferreira (2009) 

Individuals, California 
 and Texas 

Educational attainment, 
 wages 

Age at school entry Birthdate

Edmonds (2004) Child labor supply and 
 school attendance, 
 South Africa 

Child labor supply, school 
attendance 

 Pension receipt of oldest 
family member 

 Age

Hahn, Todd, and  
 van der Klaauw (1999) 

Discrimination,  
 United States 

Minority employment Coverage of federal 
 antidiscrimination law 

Number of employees 
 at firm

Lalive (2008) Unemployment  
 Benefits, Austria 

Unemployment  
 duration 

Maximum benefit  
 duration 

Age at start of 
 unemployment 
 spell, geographic 
 location
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Examples

• Example 1. Thistlethwaite and Campbell (1960)
• Scholarships awarded based on a test score cutoff.

• Example 2. Lee (2008)
• Incumbency of a particular political party is determined by

winning a plurality of votes in the previous election.



Introduction Estimation in RDD Identification RDD implementation RDD example

Extensions

• We will focus on this version of RDD but we will also briefly
consider:
• if D is not binary
• if there are multiple thresholds (multiple z0’s)
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Estimation

• Consider first estimation of

lim
z→z+

0

E(Y | Z = z)− lim
z→z−0

E(Y | Z = z)

• This is the sharp RDD estimator, but also an intent-to-treat
estimator in the fuzzy RDD.

• In the fuzzy RDD, this can be combined with a similar
estimator for the first stage.
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Estimation

• Standard estimators (parametric and nonparametric) of
E(Y | Z = z) assume that it is continuous.
• So, in a certain sense, we have to presuppose a jump in

order to look for one.
• We want methods that are robust enough that a jump will

only be estimated if there is indeed a discontinuity in
E(Y | Z = z).
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Estimation

• A general estimation framework:
• Separate regression equations on the left and right of the

threshold:

Yi = αl + fl(Zi − z0) + εi , z ≤ z0

Yi = αr + fr (Zi − z0) + εi , z > z0

where fl(0) = fr (0). Then τ = αr − αl .
• Typically these are pooled:

Yi = αl+(αr−αl)Di+fl(Zi−z0)+Di (fr (Zi − z0)− fl(Zi − z0))+εi

where Di = 1(Zi ≥ z0).
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Linear model

• If fl and fr are linear, we have

Yi = β0 + β1(Zi − z0) + τDi + γ(Zi − z0)Di + εi

• Imposing a constant slope:
• the regression equation is then

Yi = β0 + β1(Zi − z0) + τDi + εi

• this is only justified by the fact that it improves efficiency if
the slope is really constant
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Polynomial model

• Polynomial of degree q can be implemented by
• Define

fr (u) = βr1u + . . .+ βrquq

fl(u) = βl1u + . . .+ βlquq

• Then construct the pooled regression equation,

Yi = αl+(αr−αl)Di+fl(Zi−z0)+Di (fr (Zi − z0)− fl(Zi − z0))+εi
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Estimation

• Problems with “parametric” models, and solutions.
• Wrong functional form can bias estimates severely:

• the polynomial order can be chosen via cross-validation,
making this a nonparametric estimate

• note however, that series estimators can be misbehaved
near boundaries because it is a global estimator

• Identification is local so estimation should be local:
• a practical solution has been to estimate the above

regressions in a window around the cutoff
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EstimationJournal of Economic Literature, Vol. XLVIII (June 2010)288

The fundamental problem of causal infer-
ence is that we cannot observe the pair Yi(0) 
and Yi(1) simultaneously. We therefore typi-
cally focus on average effects of the treat-
ment, that is, averages of Yi(1) − Yi(0) over 
(sub-)populations, rather than on unit-level 
effects.

In the RD setting, we can imagine there 
are two underlying relationships between 
average outcomes and X, represented by 
E[Yi(1) | X  ] and E[Yi(0) | X  ], as in figure 2. 
But by definition of the RD design, all indi-
viduals to the right of the cutoff (c = 2 in 
this example) are exposed to treatment and 
all those to the left are denied treatment. 
Therefore, we only observe E[Yi(1) | X  ] to 
the right of the cutoff and E[Yi(0) | X] to 
the left of the cutoff as indicated in the 
figure.

It is easy to see that with what is observ-
able, we could try to estimate the quantity 

 B − A =   lim    
ε↓0

   E[Yi | Xi = c + ε]

 −  lim    
ε↑0

   E[Yi | Xi = c + ε],

which would equal

 E[Yi(1) − Yi(0) | X = c].

This is the “average treatment effect” at the 
cutoff c.

This inference is possible because of 
the continuity of the underlying functions 
E[Yi(1) | X  ] and E[Yi(0) | X  ].8 In essence, 

8  The continuity of both functions is not the minimum 
that is required, as pointed out in Hahn, Todd, and van der 
Klaauw (2001). For example, identification is still possible 
even if only E[Yi(0) | X  ] is continuous, and only continuous 
at c. Nevertheless, it may seem more natural to assume that 
the conditional expectations are continuous for all values 
of X, since cases where continuity holds at the cutoff point 
but not at other values of X seem peculiar.
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Figure 2. Nonlinear RD
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Nonparametric regression

• Nonparametric regression
• Estimate two nonparametric regression estimators, µ̂1(z)

and µ̂0(z), using subsets of data with Zi ≥ z0 and Zi < z0,
respectively.

• Then τ̂ = µ̂1(z0)− µ̂0(z0)
• An important problem again arises due to boundary issues

– some nonparametric estimators work well for z in the
interior of the support but not for z on the boundary of the
support.

• The choice of bandwidth is also a tricky issue: Calonico,
Cattaneo, and Titiunik (2014)



Introduction Estimation in RDD Identification RDD implementation RDD example

Nonparametric regression

• Kernel regression (Nadaraya-Watson) is a local weighted
average:

µ̂1(z0) :=

∑
i:Zi≥z0

1
h K
(

Zi−z0
h

)
Yi∑

i:Zi≥z0
1
h K
(

Zi−z0
h

)
and analogously for µ̂0(z0)

• The window size, h, is called the bandwidth.
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Nonparametric regression

• Local linear regression minimizes a weighted sum of
squares∑

i:Zi≥z0

1
h

K
(

Zi − z0

h

)
(Yi − a0 − a1(Zi − z0))

2

and analogously for µ̂0(z0)

• If K (u) = 1(|u| ≤ 1) (a rectangular kernel) then these
simply amount to estimating an average or a linear
regression in a small window to the right and left of z0.
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Estimation
• Local linear regression is preferred to kernel regression as

the latter is more biased on the boundary.
Journal of Economic Literature, Vol. XLVIII (June 2010)288
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Nonparametric regression

• Nonparametric regression estimators such as these are
always biased.
• Bias converges to 0 as h→ 0.
• But variance grows to∞ as h→ 0.
• The bandwidth is chosen to balance bias and variance – a

slightly larger h is needed to get valid standard errors
(over-smoothing).
• Calonico, Cattaneo, and Titiunik (2014) have developed a

method for choosing h optimally for RDD.
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Fuzzy design

• The fuzzy RD estimand is a Wald estimator:

limz→z+
0

E(Y | Z = z)− limz→z−0
E(Y | Z = z)

limz→z+
0

Pr(D = 1 | Z = z)− limz→z−0
Pr(D = 0 | Z = z)

• This suggests estimating the triangular system

Yi = αl + (αr − αl)Di + fl(Zi − z0)

+ Ti (fr (Zi − z0)− fl(Zi − z0)) + εi

Di = γl + (γr − γl)Ti + gl(Zi − z0)

+ Ti (gr (Zi − z0)− gl(Zi − z0)) + νi

where Di denotes treatment and Ti = 1(Zi ≥ z0).
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Fuzzy design

• 2SLS is equivalent to the ratio of reduced form to first
stage coefficient.
• May be more efficient to use different polynomial degree

and different bandwidths for two stages.
• Generally advised to use same degree and bandwidths

however.
• simpler
• 2SLS std errors are valid
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Identification

• Hahn, Todd, and van der Klaauw (2001):
1. Suppose Yi = αi + βDi , which implies constant treatment

effects, Y1i − Y0i = β.
• In addition, assume that E(αi | Zi = z) is continuous in z at

z0.
• Then τ = β (RDD identifies the constant treatment effect)
• This is for sharp and fuzzy design.
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Identification

• Hahn, Todd, and van der Klaauw (2001):
2. Suppose Yi = αi + βiDi and consider the sharp design.

• In addition, assume that E(αi | Zi = z) and E(βi | Zi = z0)
are both continuous in z at z0.

• Then τ = E(βi | Zi = z0)
• Lee and Lemieux (2010) point out that if βi = β(Ui) then

E(βi | Zi = z0) =

∫
β(u)

fZi |Ui (z0 | u)fUi (u)
fZi (z0)

du

• This is a weighted average of treatment effects – weight for u
is zero if z0 is not in the support of Zi | Ui = u.

• Consider for example, the effect of retirement on health
using an age cutoff.
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Identification

• Hahn, Todd, and van der Klaauw (2001):
2. Suppose Yi = αi + βiDi and consider the fuzzy design.

• In addition, assume that E(αi | Zi = z) and E(βi | Zi = z0)
are both continuous in z at z0.

• Also, assume that Di is independent of βi conditional on Zi

near z0.
• Then τ = E(βi | Zi = z0)
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Identification

• The assumption that Di is independent of βi conditional on
Zi near z0 is a strong assumption.
• In the Roy model, is

E(U1i − U0i | Di ,Zi = z) = E(U1i − U0i | Zi = z) for z near
z0?
• No, and it is not “easier to satisfy” because it is only

assumed locally.
• The assume is trivially true in the sharp design though!
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Identification

• Recall that if
• “monotonicity”: Di(z2) ≥ Di(z1) for all i (or Di(z1) ≥ Di(z2)

for all i)
• (Y1i ,Y0i , {Di(z)}) independent of Zi

then IV estimates the LATE parameter:
definition. LATE = E(Y1 − Y0 | D(z2) = 1,D(z1) = 0)
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Identification

• Hahn, Todd, and van der Klaauw (2001):
3. Suppose Yi = αi + βiDi and consider the fuzzy design.

• In addition, assume that E(αi | Zi = z) is continuous in z at
z0.

• Also, assume that Di(z) and βi are jointly independent of Zi

near z0.
• and that Di(z0 + e) ≥ Di(z0 − e) for all sufficiently small e
• Then τ = lime→0 E(βi | Di(z0 + e) = 1,Di(z0 − e) = 0)
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Identification

• When are αi and or βi continuous in Zi near z0?
• Imprecise control:

• Suppose αi and βi depend on variables Ui and Zi (and
hence Di ) depends on Ui and Vi .

• This allows for endogeneity of Di because Vi may be
correlated with Ui .

• If the density of Vi conditional on Ui is continuous
(imprecise control) and αi and βi are continuous functions
of Ui then the continuity assumptions (local randomization)
are satisfied.

• This condition means that Zi will not be a deterministic
function of unobservables in the outcome equation –
individuals do not have precise control over Zi (and hence
Di ).
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Identification

• Regression kink.
• The regression kink design estimand is:

limz→z+
0

∂E(Y |Z=z)
∂z − limz→z−

0

∂E(Y |Z=z)
∂z

limz→z+
0

∂E(D|Z=z)
∂z − limz→z−

0

∂E(D|Z=z)
∂z

• A straightforward example of when this works is when
Y1 −Y0 is constant, E(Y0 | Z = z) is continuous and has no
kink at z0, and Pr(D = 1 | Z = z) is continuous but has a
kink at z0.

• See Card, Lee, Pei, and Weber (2015) for more on a
generalized kink design.
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Identification

• When Di is not binary.
• If E(Di | Zi = z) experiences a discontinuity at z0 then we

can use the same fuzzy design methods as above. The
identification argument is essentially the same.

• With multiple thresholds,
• we can use separate indicators for the thresholds as

instruments in a 2SLS estimator. We can use RDD as a
way of interpreting and presenting these results and as a
way of considering the validity (identification).
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Implementation

• Graphical evidence is important in these papers.
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Implementation
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Figure 6. Share of Vote in Next Election, Bandwidth of 0.02 (50 bins)
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Figure 7. Share of Vote in Next Election, Bandwidth of 0.01 (100 bins)
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Implementation 311Lee and Lemieux: Regression Discontinuity Designs in Economics
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Figure 8. Share of Vote in Next Election, Bandwidth of 0.005 (200 bins)
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Figure 9. Winning the Next Election, Bandwidth of 0.02 (50 bins)
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Implementation

• Typical choice is to choice B bins and plot means within
each bin.
• These bins should be smaller than the optimal bandwidth –

this demonstrates the variability in the data.
• Calonico, Cattaneo, and Titiunik (2015) offer a data-driven

approach.
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Implementation

• Justifying the assumption of “imprecise control”:
• Showing that covariates don’t exhibit a discontinuity – do an

RDD with the covariate as the dependent variable.
• The “forcing variable”, Z , should not exhibit a spike in its

density at z0 – McCrary test
• Placebo tests –

• in a study of the effect of retirement on mortality Fitzpatrick
and Moore (2016): look at every other age cutoff and plot
distribution of estimates
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Implementation

• Using covariates:
• test for discontinuity – use an aggregate statistic if there are

many covariates (multiple testing problem)
• include the covariates in the RD regression to improve

efficiency
• use them to residualize Yi before doing RD
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Robustness

• It is typical and recommended that an RD design includes
• demonstration that slight decreases in bandwidth lead to

expected results (corresponding to reduced bias but
increased variance)

• demonstration that a higher order polynomial leads to
expected results (corresponding to reduced bias but
increased variance)

• demonstration that results are robust to different kernels,
adding covariates, etc.

• placebo tests
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IdentificationJournal of Economic Literature, Vol. XLVIII (June 2010)330

One of the examples McCrary uses for his 
test is the voting model of Lee (2008) that 
we used in the earlier empirical examples. 
Figure 16 shows a graph of the raw densi-
ties computed over bins with a bandwidth 
of 0.005 (200 bins in the graph), along with 
a smooth second order polynomial model. 
Consistent with McCrary (2008), the graph 
shows no evidence of discontinuity at the 
cutoff. McCrary also shows that a formal 
test fails to reject the null hypothesis of no 
discontinuity in the density at the cutoff.

4.4.2 Inspecting Baseline Covariates

An alternative approach for testing the 
validity of the RD design is to examine 
whether the observed baseline covariates 
are “locally” balanced on either side of the 
threshold, which should be the case if the 
treatment indicator is locally randomized.

A natural thing to do is conduct both 
a graphical RD analysis and a formal 

 estimation, replacing the dependent vari-
able with each of the observed baseline 
covariates in W. A discontinuity would indi-
cate a violation in the underlying assump-
tion that predicts local random assignment. 
Intuitively, if the RD design is valid, we 
know that the treatment variable cannot 
influence variables determined prior to the 
realization of the assignment variable and 
treatment assignment; if we observe it does, 
something is wrong in the design.

If there are many covariates in W, even 
abstracting from the possibility of misspecifi-
cation of the functional form, some discon-
tinuities will be statistically significant by 
random chance. It is thus useful to combine 
the multiple tests into a single test statistic to 
see if the data are consistent with no discon-
tinuities for any of the observed covariates. 
A simple way to do this is with a Seemingly 
Unrelated Regression (SUR) where each 
equation represents a different baseline 
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Figure 16. Density of the Forcing Variable (Vote Share in Previous Election)
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Further reading

• Imbens and Lemiuex (2008)
• Hahn, Todd, and van der Klauww (2001)
• Card, Lee, Pei, and Weber (2015)
• Mattias Cattaneo at Michigan
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Gauriot and Page (2015)

• In a 2015 article in AER, Gauriot and Page study
individual-specific incentives in the game of cricket.
• The individual player (batsman) has incentives that

misalign with the incentives of the team discontinuously
when he has the opportunity to pass a symbolic landmark
(50 or 100 or 200 runs in an innings).
• The strike rate (runs per ball) should jump discontinuously

when the player’s number of runs is just under these
thresholds.
• This is a sharp RDD.

• I know very little about cricket, so bear with me here!



Introduction Estimation in RDD Identification RDD implementation RDD example

Gauriot and Page (2015)

• In a 2015 article in AER, Gauriot and Page study
individual-specific incentives in the game of cricket.
• The individual player (batsman) has incentives that

misalign with the incentives of the team discontinuously
when he has the opportunity to pass a symbolic landmark
(50 or 100 or 200 runs in an innings).
• The strike rate (runs per ball) should jump discontinuously

when the player’s number of runs is just under these
thresholds.
• This is a sharp RDD.
• I know very little about cricket, so bear with me here!



Introduction Estimation in RDD Identification RDD implementation RDD example

Gauriot and Page (2015)
VOL. 105 NO. 5 417I TAKE CARE OF MY OWN

matches over the period 2001–2014. We then 
computed the number of runs scored by bats-
men for each ball they faced. Our dataset con-
tains information for 21,514 players batting in 
an innings and 674,586 balls played. Panel A 
of Figure 2 shows the evolution of batsmen’s 
strike rate around 50 (for batsmen who reached 
at least 70 in the innings). Panel B of Figure 2 
shows the evolution of the strike rate around 
100 (for batsmen who reached at least 120 in 
the innings). We observe a significant discon-
tinuity with batsmen adopting a lower strike 
rate (less risky) before reaching the landmark 
(  p < 0.001  for 50s,  p = 0.003  for 100s).

Such an adjustment of the batsmen’s strategy 
has a cost for the team in terms of the chances 
to win the match. Any decrease in risk taking 
will come with a decrease in the expected final 
score and therefore in the team’s chances. By 
decreasing their risk taking, batsmen are trading 
a smaller chance for the team to win the match 
for a higher chance for them to reach this per-
sonal milestone.

B. Study of the Captains’ Strategies

To study how team captains’ strategies are 
affected by batsmen’s individual incentives, we 
collected data on declaration times in 2,089 test 
matches over the period 1880–2014. We look 
at the density of batsmen’s scores near each 

landmark, in matches where a declaration was 
made around each landmark, using the same test 
of break in density (McCrary 2008). Figure 3 
shows the results of the test. This figure shows 
a clear break at each landmark. Indeed, when 
a declaration is made, batsmen are much more 
likely to have reached a landmark than to be just 
below one. This implies that, when a batsman 
is close to achieving a landmark, captains are 
delaying their declaration decision to allow the 
batsman to reach their landmark score.

This delay may increase the risk of a draw 
and decrease the chance of a win. Our data does 
not allow us to test for the magnitude of this 
cost. It is possible for the cost to the team to be 
relatively small if the batsman is close enough 
to the landmark. However, simulations by Scarf 
and Akhtar (2011) suggest the possibility of a 
substantial cost. If a captain waits for one of his 
batsman to score around 10  –20 runs to reach a 
landmark, he will in practice be waiting for the 
team to score around 20  – 40 runs (as a batsman 
scores on average half the runs of the batting 
pair). Scarf and Akhtar (2011) give the example 
of a team having reached a lead of 400 in the 
third inning and considering whether to declare 
with 1.3 days left to play. Their model suggests 
that waiting the time required to score another 
40 runs will actually decrease the winning 
chances of the team by 20 percentage points. 
While we cannot be sure about the exact cost 
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Figure 2. Discontinuity in the Strike Rate (Average number of runs per ball) Around Landmarks 50 (Panel A)  
and 100 (Panel B).

Notes: Local linear regression, triangular kernel, bandwidth of five runs. Panel A restricts the sample to players who reached 
70 in the innings and panel B restricts the sample to players who reached 120 in the innings.

Source: ODI matches over the period 2001–2014.
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• I will use this example to demonstrate:
• different ways of estimating discontinuities
• placebo test
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Angrist et al. (2015)

• This paper compares RDD estimates from observational
data to experimental estimates.
• Reviewers scored scholarship applicants on a scale from

11 to 26.
• If the score exceeded a certain threshold, an award was

guaranteed.
• If the score was below the threshold, the student was

randomly assigned to either receive the award or not.
• This was done within strata defined by colleges the student

applied to.
• The experimental estimate compares treatment and control

for those just below the threshold.
• The RDD estimate compares those just above the

threshold to those just below it who did not receive an
award (sharp RDD).
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 indistinguishable from this matching estimate. 
The apparent negative selection bias in the 
observational estimates presumably reflects 
STBF’s focus on measures of need that are nega-
tively correlated with post-secondary outcomes.

Many of the variables used to screen applicants 
appear in our data, so perhaps selection bias can 
be eliminated using statistical controls. As panel 
B of column 2 shows, however, controlling for 
covariates, whether by regression, propensity 
score matching, or Kline-reweighting, boosts 
the observational estimates only slightly.3

3 In results not reported here, we find that reweighting 
to produce estimates of the treatment on the treated or the 
treatment on the untreated leaves the observational estimates 
largely unchanged and still well below the experimental 
benchmark. As in Angrist and Rokkanen (2012), HIR and 
linear reweighting estimates are similar, but the HIR esti-
mates are much less precise. 

Why does controlling for covariates move 
the observational estimates so little? Although 
covariates in the observational sample are highly 
imbalanced, and we would expect those listed 
in Table 1 to predict college enrollment, it turns 
out that they explain too little of the outcome 
variation in our data to matter much as controls. 
As Pischke and Schwandt (2014) note, when the 
covariates at hand are noisy or imperfect proxies 
for strong predictors of outcomes, the addition 
of even highly imbalanced controls can have lit-
tle impact on estimated treatment effects.

A. Within-Study RD

Our RD analysis uses only applicants that 
scored within four points of the cutoff for 
guaranteed awards. The relevant experimen-
tal benchmark therefore compares randomized 
treatment and control observations that fall in 

Table 2—Effects on Four-Year College Enrollment in Year Two

Experimental Observational Experimental RD
sample sample RD sample sample

(1) (2) (3) (4)

Control mean 0.639 0.708 0.685 0.685
Raw difference 0.142*** 0.086*** 0.107*** 0.044

(0.028) (0.027) (0.033) (0.037)

Panel A. Strata-adjusted estimates
Matching 0.144*** 0.091*** 0.116*** 0.096***

(0.024) (0.023) (0.027) (0.031)
OLS 0.144*** 0.091*** 0.116*** 0.099***

(0.024) (0.022) (0.027) (0.032)

Panel B. Esitmates with selection controls
OLS 0.143*** 0.094*** 0.120*** 0.107***

(0.023) (0.022) (0.026) (0.032)
OLS with r.v. 0.024
 controls (0.064)
HIR 0.143*** 0.097* 0.119*

(0.054) (0.058) (0.063)
Kline 0.143*** 0.092*** 0.119 ***

(0.022) (0.021) (0.025)

Sample size 1,003 1,052 715 624

Notes: Samples for columns 1, 2, and 4 are defined in Table 1. The sample for column 3 includes applicants in the experimen-
tal sample who scored within four points of the guaranteed award cutoff. Estimates in panel B are from models that include 
linear controls for GPA, EFC, imputed family income, and dummies for gender and nonwhite race. HIR standard errors are 
bootstrapped with 1,000 replications.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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