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LATE

• Let D denote a treatment variable, Z and instrument.
• Let Dz denote the (counterfactual) value of D when Z is

fixed at z.

• Let Y (d , z) denote the counterfactual outcome.
• To simplify, suppose Z and D are both binary.
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LATE assumptions

Theorem 4.4.1 in MHE.
• Assumption 1. (Y (D1,1),Y (D0,0),D1,D0) ⊥⊥ Z
• Assumption 2. Y (d ,1) = Y (d ,0)
• Assumption 3. E(D1 − D0) 6= 0
• Assumption 4. D1 − D0 ≥ 0, or vice versa

Then

E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
= E(Y1 − Y0 | D1 > D0)

= LATE



LATE The Roy model Extended Roy model Generalized Roy model The MTE

LATE assumptions

Theorem 4.4.1 in MHE.
• Assumption 1. (Y (D1,1),Y (D0,0),D1,D0) ⊥⊥ Z
• Assumption 2. Y (d ,1) = Y (d ,0)
• Assumption 3. E(D1 − D0) 6= 0
• Assumption 4. D1 − D0 ≥ 0, or vice versa

Then

E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
= E(Y1 − Y0 | D1 > D0)

= LATE



LATE The Roy model Extended Roy model Generalized Roy model The MTE

Special cases

• The TT can be written as a weighted average of LATE and
the average effect for the always-takers.
• In some cases, D must be equal to 0 when Z = 0.

• The Bloom example – Z is a random assignment and D a
treatment and there is one-way noncompliance.

• One-way noncompliance means that some with Z = 1
choose D = 0 (refuse treatment) but no one with Z = 0 can
have D = 1.

• In these cases, IV estimates TT.



LATE The Roy model Extended Roy model Generalized Roy model The MTE

Special cases

• The TUT can be written as a weighted average of LATE
and the average effect for the never-takers.
• In some cases, D must be equal to 1 when Z = 1.

• Suppose D indicates having a third child (as opposed to
only 2) and Z indicates whether the second birth was a
multiple birth.

• Then if Z = 1 we must have D = 1.
• There are no “never-takers”.

• In these cases, IV estimates TUT.
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Compliers

• A few results:
• Pr(D1 > D0) = E(D | Z = 1)− E(D | Z = 0)
• for any W such that (D1,D0) is independent of Z

conditional on W , E(W | D1 > D0) = E(κW )
E(κ) where

κ = 1− D(1− Z )

1− Pr(Z = 1 |W )
− (1− D)Z

Pr(Z = 1 |W )

• and, more generally, fW |D1>D0 (w) is equal to

E(D | Z = 1,W = w)− E(D | Z = 0,W = w)

E(D | Z = 1)− E(D | Z = 0)
fW (w)
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LATE with covariates
• The LATE story gets quite a bit more complicated with

covariates.
• Let λ(x) = E(Y1 − Y0 | D1 > D0,X = x) denote the LATE

conditional on X .
• We could estimate these directly using the Wald formula

conditional on X .

• If we do 2SLS where the first stage is fully saturated and
the second stage is saturated in X we get a weighted
average of the λ(x).
• The weights are larger for values of x such that

Var(E(D | X = x ,Z ) | X = x) is larger.
• if Pr(Z = 1 | X ) is a linear function of X then 2SLS gives

the minimum MSE approximation to E(Y | D,X ,D1 > D0).
• This is useful because E(Y | D = 1,X ,D1 > D0)− E(Y |

D = 0,X ,D1 > D0) = λ(X ).
• Abadie (2003) proposes a way to estimate this same

minimum MSE approximation when Pr(Z = 1 | X ) is not
linear.
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Roy model

The Roy model is a model of comparative advantage:
• Potential earnings in sectors 0 and 1: Y0,Y1

• Individuals choose sector 1 if and only if Y1 − Y0 ≥ c
where c is a nonrandom cost.
• Heckman and Honore (1990) studied the empirical

implications and identification of this model.
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Roy model

The extended and generalized Roy model:
• the extended model allows for an observable cost

component, D = 1(Y1 − Y0 ≥ c(Z )) where Z is a vector of
covariates and c is a possibly unknown function.
• the generalized model allows for an unobservable cost

component, D = 1(Y1 − Y0 ≥ c(Z ,V )) where V is
unobservable
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Roy model

• Let Yd = µd + Ud where E(Ud ) = 0 for d = 0,1.
• If we observe a vector of covariates X , µd = µd (X ).

• Often µd (X ) = β′dX .

• We can write

Yi = Y0i + (Y1i − Y0i)Di

= µ0 + (µ1 − µ0 + U1i − U0i)Di + U0i

( = α + βi Di + ui)

• What the Roy model gives us is that it adds a model for D
to the potential outcomes framework and demonstrates the
important link between the model for D and the model for
the potential outcomes.
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Roy model

• Problem #1
• if µd = µd (X ) then OLS does not identify

ATE = E(Y1i − Y0i ) generally because of nonlinearity
(µd (X ) 6= βdX ) and observed heterogeneity (µ1(x)− µ0(x)
varies with x)

• Of course, if µd = β′dX then we solve this problem by
regressing Yi on Di , Xi and DiXi .

• Alternatively, we do matching to overcome these two
problems.

• Or, we simply do OLS (without the interaction) which
identifies a weighted average of conditional treatment
effects.
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Roy model

• Problem #2
• The above solutions only work under the conditional

independence assumption, (Y0i ,Y1i ) ⊥⊥ Di | Xi .
• In the generalized Roy model, this is only satisfied if

(U0i ,U1i ) ⊥⊥ (U1i − U0i ,Vi ,Zi ) | Xi

• no unobserved heterogeneity and non-random or
independent costs
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Roy model

• Problem #2
• A more general model is

D = 1(E(Y1 − Y0 − c(Z ,V ) | I) ≥ 0) where E(· | I)
represents the expected value from the decision-maker’s
perspective, conditional on their information set.

• In this case, conditional independence can be stated in
terms of the information available to the econometrician
relative to what’s available to the decision-maker.
• What if I consists of X and Z but not U1i ,U0i or Vi?
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Roy model

• Problem #2
• Note also that Yi = µ0 + (µ1 − µ0)Di + U0i + (U1i − U0i )Di
• There is a selection on unobservables problem (Di is

correlated with U0i ) and an unobserved heterogeneity
problem (U1i − U0i 6= 0).

• An exercise for you:
• What happens if U1i = ∆i + U0i where ∆i is independent of

U0i?
• What if U1i = U0i but U0i is not independent of Di (perhaps

because U0i is correlated with Vi )?
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Roy model

• Problem #3
• In the simple Roy model, no instruments are available.
• In the extended and generalized models, Zi is potentially a

valid instrument because it is relevant but excluded from
the outcome equations.

• However, when is E(U0i + (U1i − U0i )Di | Zi ) = 0?
• even if E(U0i | Zi ) = 0, it is unlikely that

0 = E(U1i − U0i )Di | Zi )

= E ((U1i − U0i )1(µ1 − µ0 + U1 − U0 ≥ c(Z ,V )) | Zi )

unless U1 = U0.
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Roy model

• The rest of this lecture
1. What can be identified in the various versions of the Roy

model if we assume normal errors?
2. What does IV estimate when there is “essential

heterogeneity”?
3. How can we estimate the ATE (or other similar parameters)

when we have an instrument Zi such that
(Xi ,Zi ) ⊥⊥ (U0i ,U1i ,Vi )?

4. Can we estimate policy counterfactuals with such a Zi?
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Roy model

• In the Roy model, Yd = µd + Ud for d = 0,1.
• Suppose we observe a vector of covariates X so that
µd = β′dX .
• Then

E(Y | D = 1,X = x) = β′1x + E(U1 | U1 − U0 ≥ −z∗,X = x)

E(Y | D = 0,X = x) = β′0x + E(U0 | U1 − U0 < −z∗,X = x)

where z∗ = (β1 − β0)′x − c.
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Roy model

Assumption: (U1,U0) | X = x ∼ N(0,Σ) where

Σ =

(
σ2

1 σ10
σ10 σ2

0

)

• Let V = U1 − U0

• and σ2
V = Var(V )
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Roy model

Assumption: (U1,U0) | X = x ∼ N(0,Σ)

• Let z̃ = z∗/σV .
• Then under this assumption,

E(Y | D = 1,X = x) = β′1x +
σ2

1 − σ10

σV
λ(−z̃)

E(Y | D = 0,X = x) = β′0x +
σ2

0 − σ10

σV
λ(z̃)

and
Pr(D = 1 | X = x) = Φ(z̃)
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Roy model

Estimation with only sector one observed.
• If we only observe Y for those with D = 1 (for example, a

wage-LFP model) then we can
(1) estimate the probit:

Pr(D = 1 | X = x) = Φ(γ0 + γ′1x) = Φ(z̃)

(2) compute the predicted values from (1), ˆ̃Z = γ̂0 + γ̂′1X and

plug into λ to get λ(− ˆ̃Z )

(3) estimate a regression of Y on X , λ(− ˆ̃Z ) for those with
D = 1

• This enables us to estimate β1 but not β0, σ1, σ10, σ0.
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Roy model
Estimation with both sectors observed.
• If we only observe Y ,D,X for everyone.

(1) estimate the probit:
Pr(D = 1 | X = x) = Φ(γ0 + γ′1x) = Φ(z̃)

(2) compute the predicted values from (1), ˆ̃Z = γ̂0 + γ̂′1X and

plug into λ to get λ(− ˆ̃Z )

(3) estimate a regression of Y on X , λ(− ˆ̃Z ) for those with
D = 1

(4) estimate a regression of Y on X , λ( ˆ̃Z ) for those with D = 0

• This enables us to estimate β1, β0,
β1−β0
σV

,
σ2

0−σ10
σV

and
σ2

1−σ10
σV

.
• Thus we get σV too
• From the variance of the residuals from the two regressions

we can also identify σ2
1 , σ2

0 and σ10.
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Roy model

Concerns:
• If λ(−z̃) is approximately linear then we will have a serious

collinearity problem.
• If U1,U0 is not normal then the model is misspecified and

identification is not transparent.
• If there are variable costs the model is misspecified.



LATE The Roy model Extended Roy model Generalized Roy model The MTE

Roy model

• In the extended Roy model, Yd = µd + Ud for d = 0,1 but

D = 1(Y1 − Y0 ≥ γ′1X + γ′2Z )

• “‘Cost” of participation varies with X and also with other
variables Z .
• Then

E(Y | D = 1,X = x ,Z = z) = β′1x
+ E(U1 | U1 − U0 ≥ −z∗,X = x)

E(Y | D = 0,X = x ,Z = z) = β′0x
+ E(U0 | U1 − U0 < −z∗,X = x)

where z∗ = (β1 − β0)′x − γ′1x − γ′2z.
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Roy model

Assumption: (U1,U0) | X = x ,Z = z ∼ N(0,Σ)

• Under this assumption, if z̃ = z∗/σV ,

E(Y | D = 1,X = x) = β′1x +
σ2

1 − σ10

σV
λ(−z̃)

E(Y | D = 0,X = x) = β′0x +
σ2

0 − σ10

σV
λ(z̃)

and
Pr(D = 1 | X = x ,Z = z) = Φ(z̃)

• β1 and β0 are still identified
• Σ only identified if there is an exclusion: a component of X

that does not affect costs



LATE The Roy model Extended Roy model Generalized Roy model The MTE

Roy model

What do we need/want to identify?
• The ATE is

E(Y1 − Y0) = (β1 − β0)E(X )

• The distribution of gains:

Y1 − Y0 | X = x ∼ N((β1 − β0)′x , σ2
V )

• various other counterfactuals
• need Σ to go beyond mean treatment effects
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Roy model

• In the generalized Roy model, Yd = µd + Ud for d = 0,1
but

D = 1(γ′1X + γ′2Z ≥ V )

• V includes an unobservable component of cost
• Then

E(Y | D = 1,X = x ,Z = z) = β′1x
+ E(U1 | V ≤ z∗,X = x)

E(Y | D = 0,X = x ,Z = z) = β′0x
+ E(U0 | V > z∗,X = x)

where z∗ = γ′1x + γ′2z.
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Roy model

Assumption: (U1,U0,V ) | X = x ,Z = z ∼ N(0,Σ)
• Under this assumption,

• β1 and β0 are identified
• σV is identified under the exclusion restriction
• but Var(U1 − U0) 6= σ2

V (key ingredient needed for
distribution of Y1 − Y0) is not identified
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Generalized roy model without normality

Assumption: (U1,U0,V ) ⊥⊥ X ,Z and
limz→∞ Pr(D = 1 | X = x ,Z = z) = 1
• The first assumption is essentially the same one used by

Imbens and Angrist (1994)
• The second assumption is called “identification at infinity”
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Roy model without normality

• Under these assumptions
• Let P(x , z) = Pr(D = 1 | X = x ,Z = z)
• E(Y | D = 1,X = x ,Z = z) = β′1x + K1(P(x , z))
• and limz→∞ E(Y | D = 1,X = x ,Z = z) = β′1x
• selection on unobservables goes away in the limit
• Using the same argument for D = 0, we can identify

ATE(x) = (β1 − β0)′x
• We’ve traded normality for identification at infinity.



LATE The Roy model Extended Roy model Generalized Roy model The MTE

Some preliminaries

• Let D = 1(γ′1X + γ′2Z ≥ V ) and assume that
(U1,U0,V ) ⊥⊥ (X ,Z )

• Let UD = FV (V ) where V has distribution function FV (·).
• Then D = 1(P(X ,Z ) ≥ UD) where

P(X ,Z ) = FV (γ′1X + γ′2Z ) is the propensity score and
UD ∼ Uniform(0,1).
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Definition of the MTE

• Then the marginal treatment effect (MTE) is defined as

MTE(x ,u) = E(Y1 − Y0 | X = x ,UD = u)

• This demonstrates (observable and unobservable)
heterogeneity in Y1 − Y0.
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Definition of the MTE

• MTE(x ,u) can be interpreted as the effect of participation
for those individuals who would be indifferent if we
assigned them a new value of P = P(x , z) equal to u.
• Someone with a large value of u (close to 1) will participate

only if P is quite large; this person will be indifferent if P is
equal to u. These are the “high unobservable cost”
individuals.

• Someone with a small value of u (close to 0) will participate
even if P is quite small; this person will be indifferent if P is
equal to u. These are the “low unobservable cost”
individuals.
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Identification of the MTE

• The identifying equation:

∂E(Y | X = x ,P(X ,Z ) = p)

∂p
= MTE(x ,p)

• This only works if Z is continuous.
• The effect for the “high unobserved cost” individuals is

identified by the effect of a marginal increase in
participation probability on Y at a high participation rate.
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Other treatment parameters and methods

• ATE(x) =
∫ 1

0 MTE(x ,u)du

• TT (x) =
∫ 1

0 MTE(x ,u)ωTT (x ,u)du where ωTT (x ,u)
disproportionately weights smaller values of u
• OLS and IV can also be written as weighted averages of

MTE(x ,u).
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Other treatment parameters and methods

• Consider the IV estimand ∆IV (x) = Cov(J(Z ),Y |X=x)
Cov(J(Z ),D|X=x)

• The weight here is

ωIV (x ,u) =
E(J − E(J) | X = x ,P ≥ u)Pr(P ≥ u | X = x)

Cov(J,P | X = x)

• This and many interesting implications are discussed in
Heckman, Vytlacil, and Urzua (2006).
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An example

Carneiro, Heckman, Vytlacil (2011)
• use data from the NLSY
• Y is log wage in 1991 (ages 28-34), D represents college

attendance, X a vector of controls
• vector Z : (i) distance to college, (ii) local wage, (iii) local

unemployment, (iv) average local public tuition



LATE The Roy model Extended Roy model Generalized Roy model The MTE

An example

Review of IV Roy Model Generalized Roy Model MTE

MTE
2771cARnEiRO Et Al.: EStimAting mARginAl REtuRnS tO EducAtiOnVOl. 101 nO. 6

mean values in the sample. As above, we annualize the MTE. Our estimates show 
that, in agreement with the normal model, E( u  1  −  u  0  |  u  S  =  u S ) is declining in  u S , i.e., 
students with high values of  u  S  have lower returns than those with low values of  u  S .

Even though the semiparametric estimate of the MTE has larger standard errors 
than the estimate based on the normal model, we still reject the hypothesis that its 
slope is zero. We have already discussed the rejection of the hypothesis that MTE is 
constant in  u S , based on the test results reported in Table 4, panel A. But we can also 
directly test whether the semiparametric MTE is constant in  u S  or not. We evaluate 
the MTE at 26 points, equally spaced between 0 and 1 (with intervals of 0.04). We 
construct pairs of nonoverlapping adjacent intervals (0–0.04, 0.08–0.12, 0.16–0.20, 
0.24–0.28, …), and we take the mean of the MTE for each pair. These are LATEs 
defined over different sections of the MTE. We compare adjacent LATEs. Table 4, 
panel B, reports the outcome of these comparisons. For example, the first column 
reports that

  E ( Y 1  −  Y  0  | X =  _ x  , 0 ≤  u  S  ≤ 0.04) 

  − E ( Y 1  −  Y 0  | X =  _ x  , 0.08 ≤  u  S  ≤ 0.12) = 0.0689.
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Figure 4. E( Y  1  −  Y  0  | X,  u  S ) with 90 Percent Confidence Interval— 
Locally Quadratic Regression Estimates

notes: To estimate the function plotted here, we first use a partially linear regression of log wages on polynomials 
in X, interactions of polynomials in X and P, and K(P), a locally quadratic function of P (where P is the predicted 
probability of attending college), with a bandwidth of 0.32; X includes experience, current average earnings in the 
county of residence, current average unemployment in the state of residence, AFQT, mother’s education, number of 
siblings, urban residence at 14, permanent local earnings in the county of residence at 17, permanent unemployment 
in the state of residence at 17, and cohort dummies. The figure is generated by evaluating by the derivative of (9) 
at the average value of X. Ninety percent standard error bands are obtained using the bootstrap (250 replications).

Economics 379 George Washington University

Lecture 4



LATE The Roy model Extended Roy model Generalized Roy model The MTE

• Estimating the MTE - normal model
• Option 1. Estimate using MLE.
• Option 2. Two stage estimation:

• Probit to estimate P(Zi ) (to simplify, define Zi to include Xi

and instrument(s))
• Regress Y on Xi and λ̂1i = −φ(Φ−1(P̂(Zi )))

P̂(Zi )
for Di = 1

• Regress Y on Xi and λ̂0i = φ(Φ−1(P̂(Zi )))

1−P̂(Zi )
for Di = 0

• Then

MTE(x , u) = x ′(β̂1 − β̂0) + (ρ̂1 − ρ̂0)Φ−1(u)



LATE The Roy model Extended Roy model Generalized Roy model The MTE

• Estimating the MTE – semiparametric model
• The outcome equation can be written (see II.B in Carneiro

et al. (2011)) as

E(Y | X = x ,P(Z ) = p) = x ′δ0 + px ′(δ1 − δ0) + K (p)

• There are several ways to estimate this – perhaps the
simplest is a series/spline/sieve estimator.
• Estimate P(Zi ) (logit).
• Choose a set of basis functions (polynomials) and an order,

K .
• Run the regression:

Yi = X ′i δ0 + P̂(Zi )X ′i (δ1 − δ0) + γ1P̂(Zi ) + . . .+ γK P̂(Zi )
K + ηi

• An important sacrifice here is that MTE(x ,u) is only
identified for u in the support of P. (Recall identification at
∞)



LATE The Roy model Extended Roy model Generalized Roy model The MTE

• Consider policies that affect P(Z ) but not Y1,Y0,V .
• Propensity score P∗ under new policy.
• It can be shown that the effect of shifting to this new policy

is given by∫ 1

0
MTE(x ,u)

[
FP∗|X=x (u)− FP|X=x (u)

E(P∗ | X = x)− E(P | X = x)

]
du

• This will still require large support for P(Z ).
• define a continuum of policies
• consider marginal change from baseline



LATE The Roy model Extended Roy model Generalized Roy model The MTE

• MPRTE
• Consider increasing tuition (a component of Z ) by an

amount α: tuition∗ = tuition + α.
• Corresponding propensity score, Pα.
• Define the MPRTE as

lim
α→0

∫ 1

0
MTE(x ,u)

[
FPα|X=x (u)− FP0|X=x (u)

E(Pα | X = x)− E(P0 | X = x)

]
du

• This is also equal to lime→0 E(Y1−Y0 | |µD(X ,Z )−V | < e).
• And it can be written as

∫ 1
0 MTE(x ,u)ω(x ,u) where

ω(x ,u) =
fP|X (u)fV |X (F−1

V |X (u))

E(fV |X (µD(X ,Z )) | X )
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