The Roy model

Extended Roy model

Generalized Roy model

The MTE

Lecture 10. Roy Model, Marginal Treatment Effects

Economics 8379 George Washington University

Instructor: Prof. Ben Williams

The Roy model

Extended Roy model

Generalized Roy model

The MTE

LATE

The Roy model

Extended Roy model

Generalized Roy model

The MTE

- Let *D* denote a treatment variable, *Z* and instrument.
- Let *D_z* denote the (counterfactual) value of *D* when *Z* is fixed at *z*.

The Roy model

LATE •00000 Extended Roy model

Generalized Roy model

The MTE

- Let *D* denote a treatment variable, *Z* and instrument.
- Let *D_z* denote the (counterfactual) value of *D* when *Z* is fixed at *z*.
- Let Y(d, z) denote the counterfactual outcome.
- To simplify, suppose Z and D are both binary.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

LATE assumptions

Theorem 4.4.1 in MHE.

- Assumption 1. (Y(D₁, 1), Y(D₀, 0), D₁, D₀) ⊥⊥ Z
- Assumption 2. Y(d, 1) = Y(d, 0)
- Assumption 3. $E(D_1 D_0) \neq 0$
- Assumption 4. $D_1 D_0 \ge 0$, or vice versa

The Roy model

Extended Roy model

Generalized Roy model

The MTE

LATE assumptions

Theorem 4.4.1 in MHE.

- Assumption 1. (Y(D₁, 1), Y(D₀, 0), D₁, D₀) ⊥⊥ Z
- Assumption 2. Y(d, 1) = Y(d, 0)
- Assumption 3. $E(D_1 D_0) \neq 0$
- Assumption 4. $D_1 D_0 \ge 0$, or vice versa

Then

$$\frac{E(Y \mid Z = 1) - E(Y \mid Z = 0)}{E(D \mid Z = 1) - E(D \mid Z = 0)} = E(Y_1 - Y_0 \mid D_1 > D_0)$$
$$= LATE$$

The Roy model

 Extended Roy model

Generalized Roy model

The MTE

Special cases

- The TT can be written as a weighted average of LATE and the average effect for the always-takers.
- In some cases, D must be equal to 0 when Z = 0.
 - The Bloom example *Z* is a random assignment and *D* a treatment and there is one-way noncompliance.
 - One-way noncompliance means that some with Z = 1 choose D = 0 (refuse treatment) but no one with Z = 0 can have D = 1.
- In these cases, IV estimates TT.

000000

LATE

Special cases

- The TUT can be written as a weighted average of LATE and the average effect for the never-takers.
- In some cases, D must be equal to 1 when Z = 1.
 - Suppose *D* indicates having a third child (as opposed to only 2) and Z indicates whether the second birth was a multiple birth.
 - Then if Z = 1 we must have D = 1.
 - There are no "never-takers".
- In these cases, IV estimates TUT.

Generalized Roy model

The MTE

Compliers

A few results:

•
$$Pr(D_1 > D_0) = E(D \mid Z = 1) - E(D \mid Z = 0)$$

• for any *W* such that (D_1, D_0) is independent of *Z* conditional on *W*, $E(W | D_1 > D_0) = \frac{E(\kappa W)}{E(\kappa)}$ where

$$\kappa = 1 - \frac{D(1-Z)}{1 - Pr(Z=1 \mid W)} - \frac{(1-D)Z}{Pr(Z=1 \mid W)}$$

• and, more generally, $f_{W|D_1 > D_0}(w)$ is equal to

$$\frac{E(D \mid Z = 1, W = w) - E(D \mid Z = 0, W = w)}{E(D \mid Z = 1) - E(D \mid Z = 0)} f_W(w)$$

Extended Roy model

Generalized Roy model

The MTE

LATE with covariates

- The LATE story gets quite a bit more complicated with covariates.
- Let λ(x) = E(Y₁ − Y₀ | D₁ > D₀, X = x) denote the LATE conditional on X.
- We could estimate these directly using the Wald formula conditional on *X*.

The Roy model

LATE

Extended Roy model

Generalized Roy model

The MTE

LATE with covariates

- The LATE story gets quite a bit more complicated with covariates.
- Let λ(x) = E(Y₁ − Y₀ | D₁ > D₀, X = x) denote the LATE conditional on X.
- We could estimate these directly using the Wald formula conditional on *X*.
- If we do 2SLS where the first stage is fully saturated and the second stage is saturated in X we get a weighted average of the λ(x).
 - The weights are larger for values of x such that Var(E(D | X = x, Z) | X = x) is larger.

The Roy model

LATE

Extended Roy model

Generalized Roy model

The MTE

LATE with covariates

- The LATE story gets quite a bit more complicated with covariates.
- Let λ(x) = E(Y₁ − Y₀ | D₁ > D₀, X = x) denote the LATE conditional on X.
- We could estimate these directly using the Wald formula conditional on *X*.
- If we do 2SLS where the first stage is fully saturated and the second stage is saturated in X we get a weighted average of the λ(x).
 - The weights are larger for values of x such that Vor(E(D | X = x, Z) | X = x) is larger

Var(E(D | X = x, Z) | X = x) is larger.

- if Pr(Z = 1 | X) is a linear function of X then 2SLS gives the minimum MSE approximation to E(Y | D, X, D₁ > D₀).
 - This is useful because $E(Y | D = 1, X, D_1 > D_0) E(Y | D = 0, X, D_1 > D_0) = \lambda(X)$.
 - Abadie (2003) proposes a way to estimate this same minimum MSE approximation when Pr(Z = 1 | X) is not linear.

 Extended Roy model

Generalized Roy model

The MTE

Roy model

The Roy model is a model of comparative advantage:

- Potential earnings in sectors 0 and 1: Y₀, Y₁
- Individuals choose sector 1 if and only if $Y_1 Y_0 \ge c$ where *c* is a nonrandom cost.
- Heckman and Honore (1990) studied the empirical implications and identification of this model.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

The extended and generalized Roy model:

- the extended model allows for an observable cost component, D = 1(Y₁ − Y₀ ≥ c(Z)) where Z is a vector of covariates and c is a possibly unknown function.
- the generalized model allows for an unobservable cost component, D = 1(Y₁ − Y₀ ≥ c(Z, V)) where V is unobservable

The Roy model

Extended Roy model

Generalized Roy model

The MTE

- Let $Y_d = \mu_d + U_d$ where $E(U_d) = 0$ for d = 0, 1.
- If we observe a vector of covariates X, $\mu_d = \mu_d(X)$.

• Often
$$\mu_d(X) = \beta'_d X$$
.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

- Let $Y_d = \mu_d + U_d$ where $E(U_d) = 0$ for d = 0, 1.
- If we observe a vector of covariates X, $\mu_d = \mu_d(X)$.
 - Often $\mu_d(X) = \beta'_d X$.
- We can write

$$Y_{i} = Y_{0i} + (Y_{1i} - Y_{0i})D_{i}$$

= $\mu_{0} + (\mu_{1} - \mu_{0} + U_{1i} - U_{0i})D_{i} + U_{0i}$
(= α + β_{i} $D_{i} + u_{i}$)

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

- Let $Y_d = \mu_d + U_d$ where $E(U_d) = 0$ for d = 0, 1.
- If we observe a vector of covariates X, $\mu_d = \mu_d(X)$.

• Often
$$\mu_d(X) = \beta'_d X$$
.

• We can write

$$Y_{i} = Y_{0i} + (Y_{1i} - Y_{0i})D_{i}$$

= $\mu_{0} + (\mu_{1} - \mu_{0} + U_{1i} - U_{0i})D_{i} + U_{0i}$
(= α + β_{i} $D_{i} + u_{i}$)

• What the Roy model gives us is that it adds a model for *D* to the potential outcomes framework and demonstrates the important link between the model for *D* and the model for the potential outcomes.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

- Problem #1
 - if $\mu_d = \mu_d(X)$ then OLS does not identify $ATE = E(Y_{1i} - Y_{0i})$ generally because of nonlinearity $(\mu_d(X) \neq \beta_d X)$ and observed heterogeneity $(\mu_1(x) - \mu_0(x))$ varies with x)

The Roy model

Extended Roy model

Generalized Roy model

The MTE

- Problem #1
 - if $\mu_d = \mu_d(X)$ then OLS does not identify $ATE = E(Y_{1i} - Y_{0i})$ generally because of nonlinearity $(\mu_d(X) \neq \beta_d X)$ and observed heterogeneity $(\mu_1(x) - \mu_0(x))$ varies with x)
 - Of course, if $\mu_d = \beta'_d X$ then we solve this problem by regressing Y_i on D_i , X_i and $D_i X_i$.
 - Alternatively, we do matching to overcome these two problems.
 - Or, we simply do OLS (without the interaction) which identifies a weighted average of conditional treatment effects.

The Roy model

Extended Roy model

Generalized Roy model

- Problem #2
 - The above solutions only work under the conditional independence assumption, (Y_{0i}, Y_{1i}) ⊥⊥ D_i | X_i.
 - In the generalized Roy model, this is only satisfied if

$$(U_{0i}, U_{1i}) \perp (U_{1i} - U_{0i}, V_i, Z_i) \mid X_i$$

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

- Problem #2
 - The above solutions only work under the conditional independence assumption, (Y_{0i}, Y_{1i}) ⊥⊥ D_i | X_i.
 - In the generalized Roy model, this is only satisfied if

$$(U_{0i}, U_{1i}) \perp (U_{1i} - U_{0i}, V_i, Z_i) \mid X_i$$

 no unobserved heterogeneity and non-random or independent costs

The Roy model

Extended Roy model

Generalized Roy model

- Problem #2
 - A more general model is $D = \mathbf{1}(E(Y_1 - Y_0 - c(Z, V) | \mathcal{I}) \ge 0)$ where $E(\cdot | \mathcal{I})$ represents the expected value from the decision-maker's perspective, conditional on their information set.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

- Problem #2
 - A more general model is
 - $D = \mathbf{1}(E(Y_1 Y_0 c(Z, V) | \mathcal{I}) \ge 0)$ where $E(\cdot | \mathcal{I})$ represents the expected value from the decision-maker's perspective, conditional on their information set.
 - In this case, conditional independence can be stated in terms of the information available to the econometrician relative to what's available to the decision-maker.
 - What if \mathcal{I} consists of X and Z but not U_{1i} , U_{0i} or V_i ?

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

Problem #2

- Note also that $Y_i = \mu_0 + (\mu_1 \mu_0)D_i + U_{0i} + (U_{1i} U_{0i})D_i$
- There is a selection on unobservables problem (D_i is correlated with U_{0i}) and an unobserved heterogeneity problem ($U_{1i} U_{0i} \neq 0$).
- An exercise for you:
 - What happens if $U_{1i} = \Delta_i + U_{0i}$ where Δ_i is independent of U_{0i} ?
 - What if U_{1i} = U_{0i} but U_{0i} is not independent of D_i (perhaps because U_{0i} is correlated with V_i)?

The Roy model

Extended Roy model

Generalized Roy model

Roy model

Problem #3

- In the simple Roy model, no instruments are available.
- In the extended and generalized models, Z_i is potentially a valid instrument because it is relevant but excluded from the outcome equations.
- However, when is $E(U_{0i} + (U_{1i} U_{0i})D_i | Z_i) = 0$?

• even if $E(U_{0i} | Z_i) = 0$, it is unlikely that

 $0 = E(U_{1i} - U_{0i})D_i | Z_i)$ = $E((U_{1i} - U_{0i})\mathbf{1}(\mu_1 - \mu_0 + U_1 - U_0 \ge c(Z, V)) | Z_i)$

unless $U_1 = U_0$.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

- The rest of this lecture
 - 1. What can be identified in the various versions of the Roy model if we assume normal errors?
 - 2. What *does* IV estimate when there is "essential heterogeneity"?
 - How can we estimate the ATE (or other similar parameters) when we have an instrument Z_i such that (X_i, Z_i) ⊥⊥ (U_{0i}, U_{1i}, V_i)?
 - 4. Can we estimate policy counterfactuals with such a Z_i ?

Roy model

- In the Roy model, $Y_d = \mu_d + U_d$ for d = 0, 1.
- Suppose we observe a vector of covariates X so that $\mu_d = \beta'_d X$.
- Then

$$E(Y \mid D = 1, X = x) = \beta'_1 x + E(U_1 \mid U_1 - U_0 \ge -z^*, X = x)$$

$$E(Y \mid D = 0, X = x) = \beta'_0 x + E(U_0 \mid U_1 - U_0 < -z^*, X = x)$$

where $z^* = (\beta_1 - \beta_0)' x - c$.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

Assumption: $(U_1, U_0) \mid X = x \sim N(0, \Sigma)$ where

$$\boldsymbol{\Sigma} = \left(\begin{array}{cc} \sigma_1^2 & \sigma_{10} \\ \sigma_{10} & \sigma_0^2 \end{array} \right)$$

• Let
$$V = U_1 - U_0$$

• and $\sigma_V^2 = Var(V)$

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

Assumption: $(U_1, U_0) \mid X = x \sim N(0, \Sigma)$

- Let $\tilde{z} = z^* / \sigma_V$.
- Then under this assumption,

$$E(Y \mid D = 1, X = x) = \beta_1' x + \frac{\sigma_1^2 - \sigma_{10}}{\sigma_V} \lambda(-\tilde{z})$$
$$E(Y \mid D = 0, X = x) = \beta_0' x + \frac{\sigma_0^2 - \sigma_{10}}{\sigma_V} \lambda(\tilde{z})$$

and

$$Pr(D = 1 \mid X = x) = \Phi(\tilde{z})$$

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

Estimation with only sector one observed.

- If we only observe *Y* for those with *D* = 1 (for example, a wage-LFP model) then we can
 - (1) estimate the probit: $Pr(D = 1 | X = x) = \Phi(\gamma_0 + \gamma'_1 x) = \Phi(\tilde{z})$
 - (2) compute the predicted values from (1), $\hat{Z} = \hat{\gamma}_0 + \hat{\gamma}'_1 X$ and plug into λ to get $\lambda(-\hat{Z})$
 - (3) estimate a regression of *Y* on *X*, $\lambda(-\hat{Z})$ for those with D = 1
- This enables us to estimate β_1 but not $\beta_0, \sigma_1, \sigma_{10}, \sigma_0$.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

Estimation with both sectors observed.

- If we only observe Y, D, X for everyone.
 - (1) estimate the probit: $Pr(D = 1 \mid X = x) = \Phi(\gamma_0 + \gamma'_1 x) = \Phi(\tilde{z})$
 - (2) compute the predicted values from (1), $\hat{\tilde{Z}} = \hat{\gamma}_0 + \hat{\gamma}'_1 X$ and plug into λ to get $\lambda(-\hat{\tilde{Z}})$
 - (3) estimate a regression of *Y* on *X*, $\lambda(-\hat{Z})$ for those with D = 1
 - (4) estimate a regression of Y on $X, \lambda(\hat{Z})$ for those with D = 0
- This enables us to estimate $\beta_1, \beta_0, \frac{\beta_1 \beta_0}{\sigma_V}, \frac{\sigma_0^2 \sigma_{10}}{\sigma_V}$ and $\frac{\sigma_1^2 \sigma_{10}}{\sigma_V}$.
 - Thus we get σ_V too
 - From the variance of the residuals from the two regressions we can also identify σ_1^2 , σ_0^2 and σ_{10} .

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

Concerns:

- If λ(-ž) is approximately linear then we will have a serious collinearity problem.
- If *U*₁, *U*₀ is not normal then the model is misspecified and identification is not transparent.
- If there are variable costs the model is misspecified.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

• In the extended Roy model, $Y_d = \mu_d + U_d$ for d = 0, 1 but

$$D = \mathbf{1}(Y_1 - Y_0 \ge \gamma_1' X + \gamma_2' Z)$$

- "Cost" of participation varies with X and also with other variables Z.
- Then

$$E(Y \mid D = 1, X = x, Z = z) = \beta'_1 x + E(U_1 \mid U_1 - U_0 \ge -z^*, X = x) E(Y \mid D = 0, X = x, Z = z) = \beta'_0 x + E(U_0 \mid U_1 - U_0 < -z^*, X = x)$$

where $z^* = (\beta_1 - \beta_0)' x - \gamma'_1 x - \gamma'_2 z$.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

Assumption:
$$(U_1, U_0) \mid X = x, Z = z \sim N(0, \Sigma)$$

• Under this assumption, if $\tilde{z} = z^* / \sigma_V$,

$$E(Y \mid D = 1, X = x) = \beta_1' x + \frac{\sigma_1^2 - \sigma_{10}}{\sigma_V} \lambda(-\tilde{z})$$
$$E(Y \mid D = 0, X = x) = \beta_0' x + \frac{\sigma_0^2 - \sigma_{10}}{\sigma_V} \lambda(\tilde{z})$$

and

$$Pr(D = 1 \mid X = x, Z = z) = \Phi(\tilde{z})$$

- β_1 and β_0 are still identified
- Σ only identified if there is an exclusion: a component of X that does not affect costs

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

What do we need/want to identify?

• The ATE is

$$E(Y_1 - Y_0) = (\beta_1 - \beta_0)E(X)$$

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

What do we need/want to identify?

The ATE is

$$E(Y_1 - Y_0) = (\beta_1 - \beta_0)E(X)$$

• The distribution of gains:

$$Y_1 - Y_0 \mid X = x \sim N((\beta_1 - \beta_0)'x, \sigma_V^2)$$

- various other counterfactuals
- need Σ to go beyond mean treatment effects

The Roy model

Extended Roy model

Generalized Roy model

Roy model

 In the generalized Roy model, Y_d = µ_d + U_d for d = 0, 1 but

$$D = \mathbf{1}(\gamma_1' X + \gamma_2' Z \ge V)$$

- V includes an unobservable component of cost
- Then

$$E(Y \mid D = 1, X = x, Z = z) = \beta'_1 x + E(U_1 \mid V \le z^*, X = x) E(Y \mid D = 0, X = x, Z = z) = \beta'_0 x + E(U_0 \mid V > z^*, X = x)$$

where $z^* = \gamma'_1 x + \gamma'_2 z$.

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model

Assumption: $(U_1, U_0, V) \mid X = x, Z = z \sim N(0, \Sigma)$

- Under this assumption,
 - β_1 and β_0 are identified
 - σ_V is identified under the exclusion restriction
 - but Var(U₁ − U₀) ≠ σ²_V (key ingredient needed for distribution of Y₁ − Y₀) is not identified

The Roy model

Extended Roy model

Generalized Roy model

The MTE

Generalized roy model without normality

Assumption: $(U_1, U_0, V) \perp X, Z$ and $\lim_{z\to\infty} Pr(D = 1 \mid X = x, Z = z) = 1$

- The first assumption is essentially the same one used by Imbens and Angrist (1994)
- The second assumption is called "identification at infinity"

he Roy model

Extended Roy model

Generalized Roy model

The MTE

Roy model without normality

- Under these assumptions
 - Let P(x, z) = Pr(D = 1 | X = x, Z = z)
 - $E(Y | D = 1, X = x, Z = z) = \beta'_1 x + K_1(P(x, z))$
 - and $\lim_{z\to\infty} E(Y \mid D=1, X=x, Z=z) = \beta'_1 x$
 - selection on unobservables goes away in the limit
 - Using the same argument for D = 0, we can identify $ATE(x) = (\beta_1 \beta_0)'x$
 - We've traded normality for identification at infinity.

ATE The

The Roy model

Extended Roy model

Generalized Roy model

The MTE •000000000000

Some preliminaries

- Let $D = \mathbf{1}(\gamma'_1 X + \gamma'_2 Z \ge V)$ and assume that $(U_1, U_0, V) \perp (X, Z)$
- Let $U_D = F_V(V)$ where V has distribution function $F_V(\cdot)$.
- Then $D = \mathbf{1}(P(X, Z) \ge U_D)$ where $P(X, Z) = F_V(\gamma'_1 X + \gamma'_2 Z)$ is the propensity score and $U_D \sim \textit{Uniform}(0, 1)$.

The Roy model

Extended Roy model

Generalized Roy model

Definition of the MTE

• Then the marginal treatment effect (MTE) is defined as

$$MTE(x, u) = E(Y_1 - Y_0 | X = x, U_D = u)$$

 This demonstrates (observable and unobservable) heterogeneity in Y₁ - Y₀. The Roy model

Extended Roy model

Generalized Roy model

The MTE

Definition of the MTE

- MTE(x, u) can be interpreted as the effect of participation for those individuals who would be indifferent if we assigned them a new value of P = P(x, z) equal to u.
 - Someone with a large value of *u* (close to 1) will participate only if *P* is quite large; this person will be indifferent if *P* is equal to *u*. These are the "high unobservable cost" individuals.
 - Someone with a small value of *u* (close to 0) will participate even if *P* is quite small; this person will be indifferent if *P* is equal to *u*. These are the "low unobservable cost" individuals.

The Roy model

Extended Roy model

Generalized Roy model

Identification of the MTE

• The identifying equation:

$$\frac{\partial E(Y \mid X = x, P(X, Z) = p)}{\partial p} = MTE(x, p)$$

- This only works if *Z* is continuous.
- The effect for the "high unobserved cost" individuals is identified by the effect of a marginal increase in participation probability on Y at a high participation rate.

The Roy model

Extended Roy model

Generalized Roy model

The MTE 000000000

Other treatment parameters and methods

•
$$ATE(x) = \int_0^1 MTE(x, u) du$$

The Roy model

Extended Roy model

Generalized Roy model

Other treatment parameters and methods

- $ATE(x) = \int_0^1 MTE(x, u) du$
- $TT(x) = \int_0^1 MTE(x, u)\omega_{TT}(x, u) du$ where $\omega_{TT}(x, u)$ disproportionately weights smaller values of u
- OLS and IV can also be written as weighted averages of *MTE*(*x*, *u*).

The Roy model

Extended Roy model

Generalized Roy model

Other treatment parameters and methods

- Consider the IV estimand $\Delta_{IV}(x) = \frac{Cov(J(Z), Y|X=x)}{Cov(J(Z), D|X=x)}$
- The weight here is

$$\omega_{IV}(x,u) = \frac{E(J - E(J) \mid X = x, P \ge u)Pr(P \ge u \mid X = x)}{Cov(J, P \mid X = x)}$$

• This and many interesting implications are discussed in Heckman, Vytlacil, and Urzua (2006).

The Roy model

Extended Roy model

Generalized Roy model

The MTE 0000000000000

An example

Carneiro, Heckman, Vytlacil (2011)

- use data from the NLSY
- *Y* is log wage in 1991 (ages 28-34), *D* represents college attendance, *X* a vector of controls
- vector Z: (i) distance to college, (ii) local wage, (iii) local unemployment, (iv) average local public tuition

LAI E 000000

The Roy model

Extended Roy model

Generalized Roy model

The MTE

An example

 U_s

LATE The Roy model Extended Roy model Generalized Roy model The MTE

- Estimating the MTE normal model
 - Option 1. Estimate using MLE.
 - Option 2. Two stage estimation:
 - Probit to estimate *P*(*Z_i*) (to simplify, define *Z_i* to include *X_i* and instrument(s))

• Regress Y on
$$X_i$$
 and $\hat{\lambda}_{1i} = -\frac{\phi(\Phi^{-1}(\hat{P}(Z_i)))}{\hat{P}(Z_i)}$ for $D_i = 1$

• Regress Y on
$$X_i$$
 and $\hat{\lambda}_{0i} = \frac{\phi(\Phi^{-1}(\hat{P}(Z_i)))}{1 - \hat{P}(Z_i)}$ for $D_i = 0$

Then

$$MTE(x, u) = x'(\hat{\beta}_1 - \hat{\beta}_0) + (\hat{\rho}_1 - \hat{\rho}_0)\Phi^{-1}(u)$$

he Roy model

Extended Roy model

Generalized Roy model

The MTE

- Estimating the MTE semiparametric model
 - The outcome equation can be written (see II.B in Carneiro et al. (2011)) as

 $E(Y \mid X = x, P(Z) = p) = x'\delta_0 + px'(\delta_1 - \delta_0) + K(p)$

- There are several ways to estimate this perhaps the simplest is a series/spline/sieve estimator.
 - Estimate $P(Z_i)$ (logit).
 - Choose a set of basis functions (polynomials) and an order, *K*.
 - Run the regression:

$$Y_{i} = X'_{i}\delta_{0} + \hat{P}(Z_{i})X'_{i}(\delta_{1} - \delta_{0}) + \gamma_{1}\hat{P}(Z_{i}) + \ldots + \gamma_{K}\hat{P}(Z_{i})^{K} + \eta_{i}$$

An important sacrifice here is that *MTE*(*x*, *u*) is only identified for *u* in the support of *P*. (Recall identification at ∞)

- Consider policies that affect P(Z) but not Y_1, Y_0, V .
- Propensity score *P** under new policy.
- It can be shown that the effect of shifting to this new policy is given by

$$\int_{0}^{1} MTE(x, u) \left[\frac{F_{P^{*}|X=x}(u) - F_{P|X=x}(u)}{E(P^{*} \mid X = x) - E(P \mid X = x)} \right] du$$

- This will still require large support for P(Z).
 - define a continuum of policies
 - consider marginal change from baseline

LATE	The Roy model	Extended Roy model	Generalized Roy model	The MTE
000000	000000000000000	000	0000	000000

- MPRTE
 - Consider increasing tuition (a component of Z) by an amount α: tuition* = tuition + α.
 - Corresponding propensity score, P_α.
 - Define the MPRTE as

$$\lim_{\alpha \to 0} \int_0^1 MTE(x, u) \left[\frac{F_{P_\alpha \mid X = x}(u) - F_{P_0 \mid X = x}(u)}{E(P_\alpha \mid X = x) - E(P_0 \mid X = x)} \right] du$$

00000000

- This is also equal to $\lim_{e \to 0} E(Y_1 Y_0 \mid |\mu_D(X, Z) V| < e)$.
- And it can be written as $\int_0^1 MTE(x, u)\omega(x, u)$ where

$$\omega(x, u) = \frac{f_{P|X}(u)f_{V|X}(F_{V|X}^{-1}(u))}{E(f_{V|X}(\mu_D(X, Z)) \mid X)}$$